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THE MINIMUM AVERAGE CORRELATION BETWEEN
EQUIVALENT SETS OF UNCORRELATED FACTORS*
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A simplified proof of a lemma by Ledermann [1938], which lies at the
core of the factor indeterminacy issue, is presented. 1t leads to a representa~
tion of an orthogonal matrix 7, relating equivalent factor solutions, which is
different from Ledermann’s [1938] and Guttman’s [1955]. T is used to evaluate
bounds on the average correlation between equivalent sets of uncorrelated
f%ctﬁrs.dlt is found that the minimum average correlation is independent
of the data.

1. Introduction

No other facet of the factor analysis model has generated more confusion
than the issue of factor indeterminacy. Briefly, the issue is that the latent
variables in the factor model, 4.e., the common and the unique factors, are
indeterminate as long as none of the uniquenesses vanishes and the number
of observed variables is finite. This issue was first raised by Wilson in [1928]
and subsequently discussed at length by him and several other authors
(e.g., Camp, 1932; Piaggio, 1933; Thomson, 1934, to name a few) in the
early thirties. The most comprehensive discussion was given by Guttman
(especially 1955, 1956), who also contributed several new results. A more
recent and very readable treatment can be found in Heermann [1964, 1966].
In view of the long history of this issue it is surprising that we can find no
current text on factor analysis [Holzinger and Harman, 1941; Thurstone, 1947;
Cattell, 1952; Fruchter, 1954; Harman, 1960; Lawley and Maxwell, 1963;
Harman, 1967; Pawlik, 1968; Uberla, 1968; Schonemann, 1969] which even
mentions it, let alone discusses it adequately.

A partial explanation for this neglect may, perhaps, be sought in the
fact that the early discussions all dealt with the Spearman single general
factor case. Ironically, there it is most easily understood because it cannot be
confused with the conventional rotation problem. Another reason might be
the relative difficulty of some of the early papers. We shall, therefore, give a
considerably simplified proof of a basic lemma which was first derived by
Ledermann [1938], and later used by Heermann [1966] to rederive certain
results of Guttman [1955]. Our proof of this lemma makes use of the Eckart—

* This paper owes much to an unknown reviewer.
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Young [1936] decomposition of the total factor pattern (4, U), which allows
us to shorten the proof to a few lines, while Ledermann’s stretches over
several pages. We then go on to sharpen quantitatively certain results by
Guttman [1955] and Heermann [1966] to arrive at the conclusion that the
minimum average correlation between equivalent sets of uncorrelated factors
is independent of the data and decreases for a fixed number of observed
variables as the number of common factors is increased, t.e., the factor
indeterminacy problem gets worse, rather than better, as one passes from the
Spearman case to the Thurstone case.

2. Definitions

Given a set of p observed random variables y; in " = (¥, -+ , ¥»)
which have

(2.1) expected value e(r) = ¢, and covariance matrix var (y) = Z,

we shall say “y satisfies the model of factor analysis for (4, U) and (¢, )"
if, for some m < p — 1,  can be written

@2 2=, o) = de + us,

where A4 is a p X m matrix of constants called the ‘“common factor pattern,”
U is a p.d. diagonal matrix called the “unique factor pattern,” and where
the z;in¢ = (2, -++ , Z.) are m unobserved random variables called ““(un-
correlated) common factors” and the z; in {’ = (2, -+, 2,) are p unobserved
random variables called “(standardized) unique factors” which jointly satisfy

gy _ £Y _
2.3 a¢) = ¢pim and var o) = I, ..

The matrix (4, U) will be called the “total pattern.”

In passing, we note that our argument could have been formulated, with
but minor changes in notation, for the sample case. Instead of (2.2) we could
have written ¥ = AX -+ UZ, where Y(p X N) are the observations of an
N-fold random sample on 5 with the sample means removed, i.e., a p X N
matrix of “observed (deviation) scores.” X (m X N) is a matrix of (standard-
ized and uncorrelated) “common factor scores” and Z(p X N) a matrix of
(standardized and uncorrelated) ‘“unique factor scores.” A and U would
then be sample estimates of 4 and U.

We prefer to treat the population case to emphasize the fact that the
factor indeterminacy is first and foremost a problem in the population.
The factor score issue is simply a secondary, practical problem which reflects
the population indeterminacy into the sample. We, therefore, cannot agree
with McDonald and Burr [1967] who seem to think the factor indeterminacy
is restricted to only one of the four models they discuss, Model IV, which
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essentially corresponds to our sample case. Rather, it also applies to their
Model I, which corresponds to our population case. Moreover, in the popula-
tion there is no need to worry about the existence of (¢, {')': if o satisfies the
model of factor analysis, then at least one set of factors exists by definition.
In the sample, on the other hand, one usually starts with Y, 4, and U, and
the problem arises to show that X, Z satisfying Y = AX + UZ exist if
YY'/(N — 1) = A4’ 4+ U*. This was done by Kestelman [1952] for the
uncorrelated case and by Guttman [1955] for the more general correlated case.

3. A Simple Proof of a Lemma by Ledermann

By “orthogonal right unit of a matrix B”” we shall mean a matrix T which
satisfies BT = B and TT' = T'T = I. We now wish to prove:
Ledermann’s Lemma: Any matrix B of order p X (p + m) has an orthogonal

right unit which can be expressed as a function of an arbitrary
orthogonal matrix S of order m X m.

Proof: Let

3.1) wBorm = VoD W1 am

be the Eckart-Young (1936) decomposition of B, so that
(3.2) ViV=VV=WW,=1,, D = diagonal.

Consider the matrix T defined as

3.3) T =W, W, + W.SW},
where W is of order (p - m) X m and satisfies
3.4) WiW, = ¢, WiW, = I,

(i.e., W, is an orthonormalized set of basis vectors of the nullspace of W1)
and S is an arbitrary orthogonal matrix of order m X m which can be chosen
at will.

T in (3.3) is clearly orthogonal and it is also a right unit for B, since
BT = (VDW!)(W,W! + W,SW}) = VDW; = B. Since T is a function of an
arbitrary orthogonal matrix S of order m X m, the lemma is proved.

So as not to complicate matters unnecessarily at this stage we defer the
problem whether all orthogonal right units of B must be of the form (3.3)
to sec. 6 (Theorem 3). To appreciate the significance of factor indeterminacy
and to understand what follows the lemma in its present form will suffice.

4. The Minimum Average Correlation Between Equivalent
Sets of Uncorrelated Factors

The point of the lemma is this: if a given set of random variables 5
satisfies the model of factor analysis, then we have at least one set of factors
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(¢, ¢')’ which satisfies (2.1)-(2.8). From this set we can get another set of

“equivalent factors” (é:) =17 (f_) asin

an @ o) - orr() = a, or(f) = @, o(f)

which also satisfies (2.1)-(2.3) provi(:led 7T'is chosen in accordance with (3.3).
Since T is a right unit of (4, U), the equivalent factors satisfy (2.2), as (4.1)
shows. And since T is also orthogonal, the equivalent factors (£*, {*')’ also
obey the covariance strictures (2.3). For the correlation matrix between both
sets of equivalent factors one finds

@ el [l

In particular, equivalent pairs of factors have correlation (e = 1, p + m).

We collect these observations in a ’
Corollary: Suppose a vector of random variables 7 satisfies the model of

factor analysis for (4, U) and a set of uncorrelated factors (¢, {')’.
A sufficient condition that » also satisfies the model of factor for
another set of uncorrelated factors (¢, *)’ is that both sets are
related by T in (3.3) which is a function of an arbitrary orthogonal
matrix S of order m X m, where m is the number of common factors.
The correlation matrix between both sets of equivalent, uncorrelated
factors is T'.

Starting with this observation, but a different representation for T,
Heermann [1966] showed ‘that by an appropriate choice of S the sum of the
correlations between equivalent factor pairs related by T in (3.3) can be
either minimized or maximized. Here we go a bit further and evaluate the
minimum and maximum so obtained:

(4.3) tr (T) = tr W,W] + tr W.SW} = p + tr 8.

Since tr § = 2.7 s,; and ]si;] < 1.0 imply

(4.4) —m=tr(~N <tr8§Ltrl =m,

one finds

(4.5) p—m<StrT <p+m,

i.e., one minimizes the sum of correlations if one chooses S = —1I so that

(4.6) Toiw =TS = =) = W W] — W.W; = 2W. W] — I in,
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and one maximizes this sum if one chooses, perhaps not surprisingly,

%) Touw=TE =1 =ILn.

We are interested in the worst possible case and define as a measure of the
average amount of factor indeterminacy the minimum average correlation
between equivalent solutions related by T' in (3.3), t.e.,

1 . A 1
min zk: tkk = ’————mtr Tmin .

p +

(48) TS o m™y

In view of (4.5) one finds
(4.9) r=(p—m)/(p+m=(»10~-m/p)/1+ m/p).

We have proved, therefore,

Theorem 1: The minimum average correlation = between equivalent sets of
uncorrelated factors related by T in (3.3) is given by (4.9) and does
not depend on (4, U) (or, in the sample, A, ).

To illustrate the meaning of this result, assume the ratio m/p is in the
vicinity of a third, asit often is in practical work. One finds r= (2 /3)/(4/3)=".5.

This means that in this case we can be sure, without looking at the data, that

we can find for any given set of factors (‘i) which satisfy (2.1)-(2.3) another

set with at least one factor predicting no more than 25 percent of the variance
of its equivalent twin.

Equation (4.9) also yields immediately a theoretical result which has
been proved by several writers (e.g., Piaggio, 1933; Guttman, 1956): as
lim,.. (m/p) approaches zero, the average minimum correlation approaches
unity. Loosely, if the number of variables increases indefinitely, and if it
increases faster than m, the number of common factors, then the factor
indeterminacy disappears. Since our intention was to raise, rather than
diminish, concern about the factor indeterminacy issue, we should add that
Camp [1932, p. 425] gives a numerical illustration for the Spearman case
where it “would require the measurement of 297 aptitudes,” none having
more than one common factor, namely ¢, to push the indeterminacy back
into tolerable bounds, i.e., to render g “‘almost unique.”

As one extracts more factors from a given set of observed variables the
average indeterminacy gets worse. It cannot hurt, therefore, to reread some
of the earlier discussions of this indeterminacy, even if one no longer believes
in Spearman’s model, which, as it turns out, represents the conservative
instance of this issue. Suppose Spearman succeeded in factoring g variables
for a single general factor and achieved a minimum average correlation » = 7%,
To match this », Thurstone, if he wanted to extract m common factors, would
have had to factor p variables, so that (p — m)/(p +m) = (¢ — 1) /g + 1),
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or p = mgq. Of course, he also would have had to increase the sample size

accordingly in order to estimate his Z with the same precision as Spearman.

We record this result as a

Corollary: If ¢ variables are needed to achieve a given minimum average
correlation 7* for a single general factor solution, then exactly
p = mq variables are needed to achieve the same minimum average
correlation 7* for an m common factor solution.

8. Connectron with Earlier Results
The T',,;, obtained by Ledermann [1938] is of the form

7 (5°1) Tmin = Ip+m - 2Qm(Q1I,LQm)-1Q7IlD ’

where @, is a matrix of order (p + m) X m of full column rank. As Heermann
showed in [1966], it is possible to write (5.1) in the form

Al
U
which is also the representation used by Guttman [1955]. This representation

has the advantage that it gives the diagonal elements ¢, as explicit functions
of the squared multiple correlation coefficients

(5.2) Toin = 2< )E'I(A, U)— Lin,

p:i.ﬂx...ﬂy = aJ"E—lai and Pzi.y;...yp = uﬁz—.lui
(where a; is the §/th column of the common factor pattern A and u, the #/th
column of the unique factor pattern U). These multiple correlations, estimates
of which can be, and probably should be, computed in the sample case, have
an immediate geometrical interpretation as the cosines of an angle 8 which
a given factor x; (or 2,) spans with the best linear combination of the y, .
All equivalent factors z*% lie on a cone generated by rotating z; (through T)
about a fixed axis representing this linear combination. Thus, the worst case
for a given factor z; is obtained upon locating #* on the surface of this cone
diametrically opposed to z; , so that z; and z* are separated by an angle 26.
Since cos 20 = 2 cos® § — 1, the diagonal elements f,; in Ty, are simply the
cosines of twice the generating angle of the cone. This basic geometrical
interpretation is already implicit in Wilson’s first paper [1928] and was made
explicit by Thomson in 1935 [p. 251]. For a more recent lucid statement of
the geometry of factor indeterminacy see Heermann {1964].

Using the Eckart-Young decomposition (3.1) of (4, U), one can rewrite
our Ty, in (4.6) as

(5'3) Tmin = 2W1W{ - Ip+m
= 2(W.DV') (VD> V)(VDW)) — I,...

I

4V, 1) -
2(U VA, 0) - 1.,
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where we assume, as Heermann did, that =" exists, which is not necessary,
but convenient. The result in (5.3) is the Guttman-Heermann 7., in equa-
tion (5.2).

!

The matrix (24] >2'1(A, U) = W,W! = P is idempotent and symmetric.

It is the orthogonal projector for the row space of (4, U), and it can be

’
obtained from the Moore-inverse of (4, U), which is (4, U)* = (é, )2_1.
Any symmetric idempotent matrix which is a deficient rank right unit P of
some matrix ¢ can be transformed into an orthogonal (and hence full rank)
right unit T = 2P — I, as is easily verified.

Since the trace of an idempotent matrix equals its rank, which is p for
the idempotent in (5.2), we could have evaluated tr Tnin = 2p — (p + m) =
p — m, using the Guttman-Heermann representation. Similarly, using
Ledermann’s representation in (5.1), tr Tpin = p + m — 2m = p — m. The
main advantage of our present representations (3.3), (4.6), we think, is that
the associated proofs are shorter.

Finally, since our discussion is restricted to uncorrelated factors, we can
state what happens to the minimum average correlation between equivalent
sets of uncorrelated common factors when A (4) is rotated. Let

1< 1
(5.4:) Te = z Z tif = Etr T11 N

where T, is the upper left hand partition of order m X m of Twia in (5.2),

ie, Ty = 24'27'A — I,, . Since tr L'T,,L = tr Ty, for any orthogonal

matrix L, we have

Theorem 2: The minimum average correlation 7, between equivalent sets of
uncorrelated common factors is invariant under ‘‘orthogonal
rotation’ of the common factor pattern A (4).

Note, however, that 7, , in contrast to r, is not independent of the data.

6. Necessity

A reviewer reminded us rather persistently that Ledermann’s lemma,
as used so far, gives only a sufficient condition for the relation between
equivalent sets of uncorrelated factors. He also pointed out that “a proof of
necessity, as well as sufficiency, for a class of transformations is given in
Theorem 2 of Guttman’s [1955] paper.”

This point is well taken and since our present approach is somewhat
different from Guttman’s, it remains to be shown that it also can be used
to establish the fact that all transformations relating equivalent factors
must necessarily be of the form (3.3). We deferred this aspect of the problem
so far because much can be learned about the basic problem of factor inde-
terminacy without considering this somewhat more difficult issue. If 7" in (3.3)



28 PSYCHOMETRIKA

were only sufficient, but not necessary for relating two equivalent sets of
uncorrelated factors, then all the results developed so far would still hold,
except that possibly other sets of equivalent factors might exist which are
not related by T in (3.3). In this case  would have been an upper bound to
the minimum average correlation. We feel the basic problem of factor inde-
terminacy has been ignored long enough to make it worthwhile to discuss it
in the simplest possible terms. Having done this, we now return to Leder-
mann’s Lemma and the associated Corollary and show that in fact they also
state a necessary condition for factor equivalence.

To this end we first note that (¢, ¢')’ and (£, {*)’ are linearly related
because both relate linearly to n in (2.2). It is equally clear that the matrix
of the linear mapping T, whether of the form (3.3) or not, must be orthogonal

%
since to assume otherwise (T'T # I) would imply var (;) # Iym, vio-

lating (2.3). To see that 7' must also be a right unit of (4, U) we note that

©.1) (4, U)(ﬁ) = 4, U)T’@ =4, U><£;:)

must hold for all values of the random variables z; in # and 2, in {. If we were

to assemble N = p + m linearly independent columns of such values in a

matrix K, then (4, U) # (4, U)T’ would contradict (4, U)K = 4, UO)T'K

so that 7’ must be a right unit of (4, U). Orthogonality of T’ then implies

that T must also be a right unit of (4, U). We thus have a

Lemma: If T relates two equivalent sets of uncorrelated factors (¢, ')
and (£, ¢*), then it must be an orthogonal right unit of (4, U).

We now wish to show

Theorem 3: All orthogonal right units of B of order p X (p + m) with
Eckart-Young decomposition (3.2) are of the form (3.3) if all d; in
D are nonzero.

(Guttman, 1955, is able to show necessity without this mild qualification

that = be nonsingular.) Proof: Let us write the identity

6.2) T =WWTW)W = WS*W’
where W = (W, , W,) as defined in (3.1)-(3.4) and
St Sk
(6.3) §* = W'TW =
SH S%

is partitioned so that S is of order p X p. Since T is an orthogonal right
unit of B, by definition

6.4) BT =B and TT' =TT = I,im
which implies that §*in (6.3) must be orthogonal. The other condition in (6.4),
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if written

7 W{ !
(6.5) VDWW, , W.)S* w) = VDWi ,

2

is seen to reduce to
6. a,. 05() - 1
after premultiplication by D™V’ and postmultiplication by W, . Therefore,
(6‘7) ;kl = Py S;“Z = S;‘l’ = ¢)

while 8% = S(m X m) can be chosen at will as long as it is orthogonal, so
that S* is. Hence T in (6.2) must be of the form (3.3), which is what we set
out to prove.
Theorem 3, the lemma preceding it, and the corollary in sec. 4 combine
to give the stronger
Theorem 4: Suppose a vector of random variables n satisfies the model of
factor analysis for (4, U) and a set of uncorrelated factors (¢, {’)’
and ¥ = var (x) is nonsingular. A necessary and sufficient condition
that 7 also satisfies the model of factor analysis for another set of
uncorrelated factors (£, ¢*')’ is that both sets are related by T
in (3.3), which is a funetion of an arbitrary orthogonal matrix § of
order m X m, where m is the number of common factors. The corre-
lation matrix between both sets of equivalent, uncorrelated factors
isT.
In closing we wish to reiterate two limitations of the present work:
(i) our conclusions are restricted to uncorrelated factors and (ii) the minimum
average correlation 7 includes both common and unique factors. We are
presently investigating the effect of removing either one of these restrictions.
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