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Power as a function of communality
in factor analysis

PETER H. SCHONEMANN
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It was recently reported that the likelihood ratio test (LRT) in unrestricted factor analysis
“has considerable power even when the sample size is only 10.” Here it is shown that (1) the
power of this LRT depends on the communalities (h?), (2) the average h? in the simulation on
which this conclusion was based far exceeds any found in French’s review of 20 years of factor-
analytic work, and (3) for more realistic h?, the power of the test barely exceeds the o level for

N = 30 and remains poor for Ns as large as 100.

‘Recently, Geweke and Singleton (1980) published
the results of a Monte Carlo study designed to evaluate
the performance of the likelihood ratio test (LRT) of
unrestricted maximum likelihood factor analysis
(UMLFA) in small samples.

The conventional factor analysis model, which goes
back to Spearman (1904}, can be written

n=Ag+Ug, 1)
where ' = (y(, . . ., yp) contains p observed variables
yi, £ =(%X1,...,%Xm)contains m (1 <m<p — 1) “com-

mon factors” x;j, and =@y, .. -, zZp) contains p
“unique factors” z;, which are assumed to jointly satisfy
the covariance requirement,

var(¢' ") =1 of order p + m. )
The pxm matrix A = (¢;") is assumed to have full column
rank m and is called -the “common factor pattern.”
Equations 1 and 2 imply that it is the regression pattern
of 1 on §, containing the regression weights for predict-
ing the observed y; from the m “latent” common factors
xj as rows. The pxp matrix U is the corresponding
regression pattern for the unique factors z;. It is assumed
to be positive definite and diagonal. These definitions
imply

var() =Z=A A +U?, 3)
and, further, that the partial correlation matrix,
cortf(n | §)=U (T -AAW ! = L, @

is diagonal. This is a necessary condition for the factor
model to hold for m common factors, and it can be
tested, at least in principle, as a statistical hypothesis
in applications of this model, if one appends the usual
multinormality assumption (e.g., Howe, 1955; Lawley,
1940). The ratios

h? = var(e;')/var(y;) )
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have been traditionally called “communalities.” They
can' be interpreted as the variances of the “observed
parts” y; =a;'t of the observed variables if the y; have
been standardized or, equivalently, as the squared
multiple correlations between the observed variables y;
and the common factors Xj.

Geweke and Singleton (1980) generated two popula-
tion covariance matrices Ty = AgAx' + U? for the two
factor patterns,

44332
A'=(44332), A, = ©6)
12212
and the matrix of unique variances,
diag (U?) = diag (2.0 1.66 1.33 .66 .33). @)

They then drew random samples of sizes N =10, 30,
150, and 300 and analyzed the resulting sample covari-
ance matrices with a maximum likelihood routine
similar to that of Joreskog (1967). On replicating the
analysis for various combinations of sample sizes, the
two-factor patterns, and the null hypotheses Hy: m =0,
1, 2, Geweke and Singleton reached this surprising
conclusion:

“First, this statistic may be more reliable in small
samples than previously believed: the suggestion of
Lawley and Maxwell (1971, p. 36) that Bartlett’s version
of the test can be trusted only if N — p 2 50 is probably
too pessimistic. The fewer factors being fit, the sooner
the asymptotic theory becomes appropriate as sample
size is increased, the threshold being approximately 10
observations for one factor and perhaps 25 for two . . ..
Second, the likelihood ratio test has considerable power
even when sample size is only 10” (Geweke & Singleton,
1980, p. 136).

THE COMMUNALITY PROBLEM

Geweke and Singleton (1980) deserve credit for draw-
ing attention to the important and long-neglected power
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problem in UMLFA. However, their results cannot be
expected to generalize to correlation matrices that typi-
cally arise in real life, because the simulation employed a
population covariance matrix with unrealistically large
communalities. The correlation matrix for A, associated
with Equation 6 and U? (Equation 7) is reproduced in
the upper triangle of Table 1. With one exception, all
correlations are in the high 80s or low 90s. Such correla-
tions are rarely found in the social sciences, in which
factor analysis is primarily used, because most measures
are not reliable enough to permit such a high share of
the variance. As a consequence, the communalities
employed in the Geweke and Singleton (1980) study
are equally unrealistic, averaging 93 (see Table 2).

A fairly representative estimate of the communality
range encountered in the social sciences can be distilled
from a review of some 69 factor-analytic studies con-
ducted in the 1940s (French, 1951). The distribution
of the average communalities for the 61 studies with
admissible communality estimates is given in Table 3.
In no case does the average communality reach the value
employed in the Geweke and Singleton (1980) study.
The two highest values stay well below .75, and the
average is around .55. The studies reviewed by French
cover a wide spectrum of ability tests, sample sizes,
and extraction methods of the period, including most
commercial tests in use at one time, or even now. They
thus can be viewed as a representative sample of the
best efforts of the factor-analytic tradition-in the social
sciences prior to the arrival of the presumably more
sophisticated iterative algorithms developed by Browne
(1969), Joreskog (1967), Howe (Note 1), and others in
the 1960s and early 1970s. Since communalities depend
on the data, not on the algorithm used for their analysis,
it is not likely that the average communalities have

Table 1
Correlation Matrices Implied by =y = A, A, + q;U?
1 2 3 4 5
1 1.00 .89 .85 91 .80
2 49 1.00 91 92 .89
3 45 52 1.00 .89 92
4 .53 .57 .53 1.00 .85
5 45 .59 58 .58 1.00

Note—Upper triangle: qp = 1.0 (Geweke & Singleton, 1980,
study). Lower triangle: qy, = 10 (approximate average of French,
1951, survey).

Table 2
Communalities Implied by Various Multipliers qj
ax 1 2 3 4 5 nz ),
1.0 90 92 91 94 .96 93 2.92%
1.5 .85 .89 .87 91 94 .89 1.95
2.0 .81 .86 .83 .88 92 .86 1.47
3.0 74 .80 a1 .84 .89 .81 .98
5.0 63 1 .66 5 83 72 .59

7.0 55 .63 .58 .68 .78 .65 42
10.0 .46 .55 .49 60 71 .56 29t

*Geweke and Singleton (1980). fFrench (1951) survey.

Table 3
Average Communalities in 61 Studies Reviewed by French (1951)

Upper Boundary .35 40 45 .50 .55 60 .65 .70 .75
Class Frequency 02 04 03 12 19 10 07 02 02

changed appreciably since the French study was com-
piled. French’s review dealt with ability and achieve-
ment measures, which are among the better, more
reliable measures in the social sciences. For personality
measures, which have also been extensively factor
analyzed, the correlations and communalities are more
likely to average in the 30s and low 40s.

POWER ESTIMATES AS A FUNCTION
OF COMMUNALITY

To obtain an idea of what the power of the LRT might
be for the factor pattern A, with communalities more in
keeping with the typically encountered range, random
samples were drawn from multinormal populations with
covariance matrices,

Tk = A Ay + gk UP, (®)

for various values of the multiplier qx, as given in
Table 4, which thus controls the effective average com-
munality in the population (see Table 2). Two hundred
such samples were reanalyzed for gy =1 (i.e., in exact
accord with the population matrix selected by Geweke
& Singleton, 1980) under Hy: m =2, to estimate the
null distribution of the test statistic for A,, which has
rank 2. The rest of the simulation dealt with the (incor-
rect) hypothesis

Hy:m=1, ©

to assess the power of the test as a function of the
average communality when A, is kept fixed. In all cases
but one, the sample size was fixed at N =30. The
number of replications run for each qx was 200. The
LRT statistic employs the correction recommended
by Box (1949). The UMLFA algorithm was written by
Browne (1969).

The results of this replication of the Geweke and
Singleton (1980) study for varied communality param-
eters are tabulated in Table 4 as cumulative proportions
of the probabilities associated with the chi-square
statistics obtained on reanalysis of the sampled correla-
tion matrices. The empirical distributions are presented
explicitly for 100 replications per row, to enable the
reader to estimate the power directly and, at the same
time, to convey an impression of the stability of such
empirical estimates for 100 replications, the number
employed in the Geweke and Singleton study.

The null distribution (first two rows of Table 4) cor-
roborates the results obtained by Geweke and Singleton
(1980) that “the null hypothesis . . . will be rejected too
often” (p.136) when it is true. They observed 13%
rejections of Hy at the .05 level for N =10. In the



Table 4
Performance of LRT as a Function of Average Communality

a Level
qe h? St 1 2 3 4 5 6 7 8 9 1.0
m=2,m, = 2, N= 30 (Null Distribution)

1.0 .93 A .16 .23 .37 51 67 .78 .84 .89 94 1.0
B .11 .24 35 49 67 .80 .83 .89 .94 1.0
m=2,m, = 1, N= 30 (Power Estimates)
1.0 .93 A .79 .90 94 98 .99 1.00 1.00 1.00 1.00 1.0
B .81 .90 .95 97 99 99 99 99 .99 1.0
15 89 A 55 .72 .79 85 88 91 95 .98 1.00 1.0
B 48 .65 .75 .82 .90 94 .99 .99 1.00 1.0
20 .86 A 45 64 72 80 .87 91 .91 .97 98 1.0
B 42 53 64 72 80 .82 .88 .92 96 1.0
3.0 .81 A 22 32 44 52 62 69 77 .83 90 1.0
B .34 52 62 .71 .82 89 .90 .95 97 1.0
50 .72 A .19 .29 42 51 .64 71 .72 84 95 1.0
B .19 .27 .37 47 59 .70 .81 .88 95 1.0
70 65 A .14 .26 .37 40 .52 64 .72 .80 .93 1.0
B .15 .26 .38 52 68 .72 .82 .89 .92 1.0
100 .56 A .09 .22 36 41 51 61 .72 .82 .921.0
B .17 .24 35 41 49 61 .72 .80 .95 1.0
m=2,m, =1,N=100
10.0 .56 A .17 .32 47 50 55 62 .71 .77 .88 1.0
B .14 .26 .38 52 62 .68 .75 .87 .99 1.0

Note—Entries under o levels indicate proportions of rejections of
Hy:m= 1. A/B = two separate studies, based on 100 replications
each. N = sample size. Example: The last two rows for N = 30
give rejection proportions for population covariance matrix with
average communality h* =.56 (modal value of French, 1951,
review). A .1 level test rejects the (false) H,: m =1 in nine
responses, or 17% of the cases, so that the estimated power of a
.1 level test against the correct alternative H,: m=2 is .13.

present study, the observed frequencies of rejection were
16% and 11%, respectively, at the .1 level for N =30.

The third and fourth rows of Table 4 give the power
estimates for the same population covariance matrix for
N =30. Geweke and Singleton (1980) found that “for
30 observations the . . . proportions [of rejecting Hy at
the .05 and .01 levels] were 63 and 42 percent, and for
150 and 300 observations the one factor model was
always rejected at both significance levels” (p.136).
Superficially, the present reanalysis also seems to cor-
roborate this earlier finding, because the power at the
.1 level was estimated as .80 and .79 for each of the two
runs with 100 replications.

However, as the remainder of Table 4 shows, this
impressive result is tied to the unrealistic choice of the
population covariance matrix used by Geweke and
Singleton (1980). Their results, therefore, do not war-
rant the following unqualified recommendation: “Based
on the experimental results reported in Table 1, it seems
advisable to adopt smaller significance levels in smaller
samples” (Geweke & Singleton, 1980, p. 136). As can
be seen from the columns of Table 4, the power fades
rapidly as the average communality approaches a more
realistic range. When this value attains .72, which is still
at the upper tail of the distribution for the French
(1951) summary, the power estimates for .1 level tests
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are in the upper 10s or low 20s. For the modal value
of the French distribution (h® = .55), the power barely
exceeds the chosen level of significance. As the last two
rows in Table 4 show, this poor performance of the
test of fit improves only slightly when the sample size
is raised from 30 to 100. At this point, a .2 level test
has one chance out of three to detect that Hy: m=1
is false.

Although these empirical results are conditional on
the particular factor pattern A, selected by Geweke and
Singleton (1980), they raise sufficient doubts about the
value of the LRT in factor analysis in general to call
for further, more representative investigations of the
merits of maximum likelihood algorithms for factor
analysis, which, especially in view of the considerable
cost of these programs, are long overdue.

DISCUSSION

Although the power estimates in Table 4 are conditional
on the particular factor pattern A, selected by Geweke and
Singleton (1980), the monotonic relationship between power
and average communality will hold in general. To see this, let

E=U"'(C-AAYU? (10)
be the sample analog of the partial correlation matrix (Equa-
tion 4), where C is the observed covariance matrix, and U? and
A are the maximum likelihood estimates (LMEs) of U? and A.
Then the LRT statistic can be written

T(Y) = —constIn |E|. (11
This criterion can be viewed as a measure of the departure of
the latent roots of E around their average, unity. If one denotes
the eigen decomposition of U7'CU?

UT'CU ' =L(MD+DL, a2

where

D +1I=diag(c, +1,...,cp+1) 13)

contains the p latent roots, ordered by size, L contains the

associated latent vectors, and L, is the pxm matrix of latent

vectors, which correspond to the m largest latent roots c, + 1,
.s¢m * 1, then the MLE of A is

A=UL, D, %, (14)
and it will satisfy the identifiability condition
A'U2?A = diag(c,, - . ., Cm)- (15

Since the two matrices on the right of Equation 10 share the
same eigen vectors L,, Equation 11 can be written in terms of
the Ci
T(Y) = —const [In(1+cm,) +... +in(l +cp)). (16)
If the (m+ 1)st c; is close to zero, it will not contribute
much to this measure of fit, and the test will tend to accept
H, for m, <m. But if ¢;* is the latent roots of A"U?A associ-
ated with £, = AA"+ U?, then

¢, = ¢i/qy an

is the corresponding roots of A'UM?A agsociated with Tk =
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AA +UD2 = A7 + qiU?. As an illustration, the m'th (second)
root for the Iy of the present study is given in the last column
of Table 2. For a suitably large qi, the m'th root can be made as
small as one pleases. Although A will retain full column rank m
for all finite choices of qy, this fact will be more and more
difficult to detect in the sample with the measure of fit (Equa-
tion 16). As gy increases and, consequently, h® and c(k),,
decrease, a test of Hy: my <m will lose power against the true
alternative H, : m;, = m.

The m'th root ¢, is also a critical indicator of the definition
of the common factors. If this root is small, then the m'th com-
mon factor will be poorly defined. This peculiar property of the
conventional factor model (Equations 1 and 2), that it allows
for the existence of other sets of common factors, x;*, when at
least one such set, xj, exists, was first noticed by Wilson (1928/
in press). For an account of the uneven history of this indeter-
minacy problem, see Steiger and Schonemann (1978); for some
of the implications, see SchGnemann and Steiger (1978) and
Steiger (1979).

The minimum correlation between two equivalent common
factors, xj and X;*, can be expressed as

pi= (¢~ Dl +1),j=1,...,m (18)
(Schonemann & Wang, 1972). If ¢; <1, then two equivalent
common factors x; and x;* exist that are negatively correlated.
Schonemann and Wang found that such negative correlations
arise in practice quite often once m is raised to achieve a statisti-
cal fit.

As long as the communalities of the actual test batteries
remain in the range indicated by the French (1951) review, the
m'th root ¢y, is likely to be small, and, as a result, users of the
factor model will be confronted with two problems at once:
poorly determined factors and low power of the tests of fit.
Both problems can be traced algebraically to the magnitude of
the smallest root ¢y, in the population.
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