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FACTORIAL DEFINITIONS OF INTELLIGENCE:
DUBIOUS LEGACY OF DOGMA IN DATA ANALYSIS

Peter H. Schénemann
Purdue University

1. EARLY DEFINITIONS OF "INTELLIGENCE": TOO MANY ANSWERS
IN SEARCH OF A QUESTION

According to Cronbach (19489, p.101). "the outstanding
success of scientific measurement of individual differences
in behavior has been the intelligence test movement.
Despite overenthusiasm and occasional errors that have
attended their development, mental tests stand today as the
most important single tool psychology has developed for the
practical guidance of human affairs.” Edwards echoes the
same sentiment 25 years later: "If one were to choose the
one area of psychology which is most representative of
concerted effort and practical meaning, surely the
measurement of intelligence and its implications would be
foremost” (1974, p.3).

Vernon, on the other hand, has noticed some changes:
"Since 1969 a considerable amount of research and critical
writing has been published that does not consist merely of
ideologically biased arguments” (1979). He is "disturbed by’
the current unpopularity of intelligence tests in the United
States (and elsewhere) and ...therefore tried to analyze the
reasons for this situation and how far it is Jjustified.”
(19789, p.viii). One such critic is Blum (1978). After
defining "pseudoscience... as a sustained process of false
persuasion transacted. by simulation or distortion of
scientific inquiry and hypothesis testing”, he concludes
"the twentieth century’'s two clearest instances of grand
pseudoscience have been Lysenkoism in the Soviet Union...
and the various offshoots of Galton's theory in the United
States and Great Britain, first under the title of eugenics
and biometrics, and later referred to as psychometrics and
behavior genetics” (p. 147).

As Wechsler discovered, it is much eas1er to define

"intelligence tests” than it is to define "intelligence”

"From the point of view of their avowed intent and wide use,
intelligence tests are psychometric devices — in practice,
sets of standardized questions and tasks, for assessing an

individuals potential for purposive and useful behavior, at
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least in those aspects of it which one agrees to designate
as inzelligent. Te be sure, there are many different
definitions of inteiligence, but nearly all intelligence
scales appraise it in much the same way, namely by measuring
a subject’'s mental abilities or current intellectual
capacities.” (Wechsler, 1874a, p. 30). Edwards (1874,
p.13) tells us that Wechsler, at an earlier stage, was
"content to describe general intelligence as a kind of
energy which was neither definable nor measurable”.

In his recent book, Bias in Mental Testing, Jensen (1880,
p.170) taking a leaf from Spearman (1927, p. 11f), lists
several verbal definitions of intelligence which have been

of fered over the years. Among these, Boring's probably
comes closest to matching Wechsler's (above) in circularity:
"Measurable intelligence 1is simply what the tests of
intelligence test, until further scientific observation

allows us to extend the definitions” (Boring, 1923). This
version is sometimes offered as a paradigm of hardnosed
operationalism. The trouble is that "intelligence tests” is
used in the plural. Since the various intelligence tests do
not correlate perfectly (see again Jensen, 1980, p. 314 for
detailed numerical evidence), such a definition implies as
many intelligences as there are intelligence tests. It was
srecisely this point which Spearman set out to deal with
ner he proposed his Two Factor Theory of intelligence. In
tnis respect, and perhaps in others, he was ahead of his
time, and perhaps not only his.

¥

The hristorical connection between intelligence theories
arné¢ Tactor theories is well known. Although gererally most
suthors in the intelligence field make some reference to
“aztor analysis, they differ in their commitment to factor
-nasries as a basis for defining intelligence. At one time
We-rsler (1939) seemed quite impressed with factor analysis:

'Mcre tharn 30 years ago, Professor Carl Spearman actually
solved the problem by showing, through rigorous mathematical
sroof, that al! intellectual abilities could be expressed as
functions of two factors, one a general or intellectual
factor common to every ability, and another a specific
factor, specific to any particular ability and "ir. every
case different from that of all others'...We cannot enter

into all this here, but can only indicate our own position
by saying that Professor Spearman’'s generalized proof of the
two—-factor theory of human abilities constitutes one of the
great discoveries of psychology” (1938, p.35). However, 20
years later, Wechsler had second thoughts: "...the profusion
of factors discovered seems to contradict the intent or
purpose of the factorial technique, the generally stated aim
of which 1is to account for the major variance of a large
battery of tests in terms of a minimal number of primary
abilities or factorg. Actually, there seem to be more
factors than available tests, certainly good tests of
intelligence” (1958, p.127).

Vernon, another prolific writer on intelligence, is
equally ambivalent about the value of factor analysis for
intelligence theory. On the one hand, he defends factor
analysis and takes issue with ‘“critiecs [whe] deny the
relevance of factor =analysis to defining intelligence
because of the disagreement between different factor models.
But I have tried to show that these discrepancies are
exaggerated® (1978, p.61; my emphasis). In a similar vein,
on p.67: "The apparent conflict between the various models
does not imply that factor analysis is worthless.
Discrepancies arise mainly because heterogeneous samples are
used in some studies, and selected, homogeneous groups in
others.” On the other hand, "we can see that factor
analysis does not yield any definite solution to the problem
of wuni- or multi—dimensionality of intelligence, though
there is more agreement than appears on the surface when
account is taken of the effects of the heterogeneity of the
population™ (p. 81). In 1970 (p. 105), he added
cryptically: "Though I cannot offer any satisfactory answer,
it is some consolation to recollect that they [the various
factor solutions] are mathematically inter-convertible - in
other words, that factor analysis by itself cannct !iell us
how man's traits and abilities are organized.’ i

Jensen, by comparison, seems to have less tolerance for

ambiguity. He is firml!y committed to factor analysis as a
basis for intelligence theory: "The basic vocabulary,

concepts, and typical results of factor analysis are so
absolutely central to any theoretical understanding of
intelligence and to the scientific definitien of the concept
itsell that the reader who does not possess some idea of how
factor analysis works will simply run the risk of reading
the whole remainder of this book with misapprehension every
time certain key terms are used, including the key <ccncept
of 'intelligence'" (1980, p. 185, my emphasis). Jensen has
vecome the center of some controversy because of his
unorthodox views on the inheritance of intelligence (Jensen,
1869). Vernon seems to think this controversy could have
been avoided had Jensen demonstrated a Dbetter sense of
timing: "It was indeed unfortunate that publication of the
19828 article coincided with the peak of ccllege student
activism against the establishment’' and the pressures for

black power” (1979, p. 14). Rather than arguing about
Jensen's conclusions, I propose we now examine his basic
premise: can factor analysis furnish an operational

definition of intelligence?

2. SPEARMAN: A NEW QUESTION, WITH A NEW ANSWER

"Chaos itself can go mno further! The disagreement
between different testers — indeed even between the doctrine
and practice of the selfsame tester - has reached its
apogee. If they still tolerate each other's proceedings,
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i is only rendered possible by the ostr%ch—lik? pol1$y of
ﬁztslzzki:gyfacts in the face. In Fruth. intelllg?nce ha:
become a mere vocal sound, a word with so many meanings tha
finally it has none...test results and numer§cal tables are
further accumulated; consequent action affecting the welfare
of thousands of persons is proposed, and even taken, on the
grounds of -— nobody knows what!” (Spearman, 1927, p-15).

i e first few chapters of Spearman's Abilities
of 0;3233%12273? one quickly discovers tha? Spearman Yas
thoroughly disillusioned with bhe. _sgmant1c_» confusxon
surrounding him. By placing the definition of 1nte111gen?e
on a more solid empirical foundation, he hoped to make it
more fruitful for empirical research.

He began by taking stock of three major 'dpctrines' of
intelligence which were current at the time:

(i) the monarchic doctrine "...which assumes mental ability
to 1ie under the sovereign rule of one great power named
"intelligence '™ (p. 4).

(ii) the oligarchic doctrine "...of several different powers
(abilities, capacities, levels, or h?yever elfe th?y may ?e
named) . Typical instances are judgment , memory .,
"invention’, 'attention’. Each of these 1s tgken to
constitute a separate function or behavior—unit on 1?5 own
account. Accordingly., each allows and requires its own
separate measurement” (p. 26).

iii) the anarchic doctrine: The "crude view that all
;;;tZties are independent’ (p.55) which he traces ba?k to
Thorndike (1803, p.39): "the mind is a host of h%ghly
particularized and independent faculties”. Spearman rejects
this "crude view' even if it were amended to allow the many
dirfferent abilities to be more or less correlated.

Upon closer scrutiny, Spearman rejects all three
"doctrines” and supplies his own, fourth:

i i : 1 and
iv) the eclectic doctrine of two factors, one general
gne) specific factor for each test, as Wechsler has outlined
it in the above (1939) quote.

In order to appreciate the difference between ESpearman's
efforts and those of his predecessors, we m&st now take a
closer look at his "Two Factor Theory (TFT) of

intelligence. ~There are basically two major differe?c?s.
(i) Spearman developed his theory from a s?ec%fxc.
;eplicéble empirical observation of some generality: the

i i i he knew were
observation that all intelligence tests he ) r

positively intercorrelated ("law of the pos*txve manifold”)
and, (ii) he stated his theory in mathematl?al terms, S0
that its logical structure could be more easily checked for

‘stringency than the vague verbalisms of his predecessors.
Both steps took a measure of courage and commitment to
traditional scientific values: the empirical observation he
started with might at:a:later time be shown to be false, and
the logical structure He proposed to describe it with might
later be shown to be inconsistent. 'He, therefore.. made it
relatively easy for his rivals to attack him. - These risks
are considerably lessened if one employs a definition which
contains sufficiently many undefined terms to "be wvirtually

meaningless, or which is logically contradictory, e.g. by
defining “intelligence® -as something which cannot be
defined. Logical contradictions are especially useful for’

constructing irrefutable theories, because they imply any
statement whatever.

Spearman proposed a definition of "intelligence”™ which
was part of an empirically falsifiable theory. This theory
was intended to “explain® a "law”, namely the "law of the
positive manifold”, which Guttman now (1877, p.7) calls “"the

first law of intelligence”: "This [i.e. the eclectic]
doctrine was based upon what we have all along been’  {inding
of such paramount importance, namely, the correlations

between abilities” (Spearman, 1927, p.72).

Spearman explained the positive manifold by assuming that
each test y; is composed of exactly two components

(2.1) y;: = §i + e;

which are uncorrelated with each other. The first
component, ¥;, is proportional to a "general factor” x
(Spearman called it "g". for "general ability") which is
"common” to all the tests y;. The second component, e;. is
proportional to a second factor z; which 1is not only
uncorrelated with x, but alsoc with every other zj, and thus,
"specific” to the 1i'th test (hence: TFT). If one defines
the two constants of proportionality a; and uj .,
respectively, then the TFT can be written

(2.2) Y1 = a; X + u; zZ;
or, in matrix notation,

(2.3) n=ax+U¢

where n'=(y1,...,y,) contains the p observed intelligence
tests, x is the common factor ("g"). and $'=(zy,....2p)
contains the p specific factors. The vector a'=(ay,....ap)
contains the weights with which the general ability x enters
each intelligence test vi» and the diagonal matrix
U=diag(ux,....up) contains the weights with whiech each
specific factor enters the i'th test. Both sets of weights
were assumed to be positive, i.e. the general factor and
the specific factors entered each test to various degrees,
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but always with the same sign. This explained the positive
manifold. To complete the formal statement of Spearman’s
model, we have to add to the "structural equation” (2.3) the
covariance stipulations which Spearman imposed:

(2.4) var(x, §{’) = Ig¢1-

This equation simply states that all "latent variables”,
the common factor x, and the p specific factors z,, are
uncorrelated with each other (the variances being set to one
arbitrarily). This covariance condition is an essential
part of Spearman’'s model. It is of fundamental importance
if one one wants to understand its formal properties and
limitations. Most texts have been somewhat delinguent in
stating this model explicitly and completely. This has led
to considerable confusion which could have been avoided.

It is c¢lear that Spearman's TFT goes beyond a simple
restatement of the “law of positive manifold” it is supposed
T help explain, because it has other, additional
consequences, which can be empirically tested. If one
denotes the covariance matrix of the observed variables y;
by var(n)=Z, then Spearman’'s model implies

(2.8) £ = a a' + U2,

Since all the regression weights a; in « are assumed to Dbe
positive, a reordering of the observed variables y;
according to the magnitude of the a; will produce a
correlation matrix with a "hierarchical” structure: all
correlations will taper off from the upper left hand corner
c¢f the permuted table. However, since the same is true for
trhe manifest correlations of entirely different structures,
such a test by inspection could be misleading. A stronger
test is provided by the "ideal rank” of Z. Since aa' is of
rank one. and U2 affects only the diagonal elements of Z,
one finds that all 24x2 determinants of ‘£ which do not
involve the diagonal elements (and which Spearman called

"tetrad differences”), must vanish. He spent considerable
effort on developing statistical tests for this prediction
of the model. An equally obvious implication of (2.85) 1is

that the columns of &£, aja, are proportional te each other,
if one again omits the rows corresponding to diagonal
elements. This gives a second, somewhat cruder test of the

model, which is more easily applied in practice: “the
average intercolumnar correlation” of & should be near
unity, if the model holds. Thus, Spearman's approach was

thoroughly "confirmatory”, to use another fashionable term.
This should not come as a surprise, because he had interided
the factor model as a mathematical theory for intelligence,
not as the device for "exploratory data reduction” which it
later became.
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On applying these tests to available intelligence data,

Spearman found his theory confirmed: "The average
intercolumnar correlation from tables of 14 different
investigators, summarizing 30 years of psychological

researches and representing a great wealth of test material,
was unity, as predicted by the unifocal hypothesis of a
general factor. It seemed to be the most striking
quantitative fact in the history of psychology”™ (Dodd, 1928,
p.214). It is therefore understandable that Spearman should
have felt elated: "Indeed, so many possibilities suggest
themselves that it is difficult to speak freely without
seeming extravagant...It seems even possible to anticipate
the day when there will be yearly official registration of
the 'intellective index', as we will call it, of every child
throughout the kingdom...The present difficulties of picking
out the abler children for more advanced education, and the
'mentally defective’ children for less advanced, would
vanish in the solution of the more general problem of
adapting education for all...Citizens, instead of choosing
their career at almost blind hazard, will undertake: just the
professions really suited to their capacities. One can even
conceive the establishment of a minimum index to qualify for
parliamentary vote, and above all for the right to have
offspring” (Hart and Spearman, 1912, pp. 78-79).

3. THOMSON: ANOTHER ANSWER TO THE SAME QUESTION

After a few years of consolidation, a number of questions

were raised about this new intelligence theory. More
interesting than the guestions is the way in which they were
eventually answered. Three of these questions are of

Earticular importance for any attempt to define
intelligence"” operationally through factor analysis:

(i) It turned out that the model did not always fit as well

as Spearman had hoped. In many cases the tetrad differences
were not zero, and the average intercolumnar correlation was
not unity. Thus, there might be more than one intelligence
factor. )

(ii) In (1916), Thomson showed that he could produce
correlation matrices with all the properties predicted by
Spearman’'s theory, although the data had been generated from
a very large number of common factors, instead of only one
general factor. Thus, there might be infinitely many
intelligence factors.
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(iii) In 1928, Wilson showed, in his review of Spearman's
"Abilities of Man", that the Two—Factor model had a built in
flaw which threatened the very purpose it was designed to

achieve: g, i.e., the common factor x in eq. (2.3), and the
specifiec factors z;, were not uniquely defined by the
observed variables y; even when the model fit the data
perfectly. Thus, there might be no operationally definable

intelligence factor at all.

Technically, the first problem is easily dealt with by
simply generalizing Spearman’'s model from one to m (1=m<p-—-1)
common factors. Spearman was reluctant to adopt this easy
solution, presumably because this would have meant
abandoning his “"eclectic doctrine” in favor of the
"oligarchic doctrine” which he found unacceptable on
philosophical grounds (1927, p.39).

The technical aspects of this extension had been
discussed by Garnett (18189) and Dodd (1928), some time
before Thurstone established his claim on this “multiple
factor analysis” generalization (1931, 1847, p.vi) of
Spearman's model. The matrix formulation of this more
general model is

(3.1) n = A & + U ¢

(3.2) var(g') = ¥, var({) = Ip, cov(E.f) = ¢,
where A 1is a pxm (common) "factor pattern”, £'=(x;,...,%Xmn)
contains the m common factors, and ¥ is their
intercorrelation matrix (which 1is often taken as I,). To
avoid confusion with other factor models, I shall call

(3.1), (8.2) the "Conventional Factor Model” (CFM), because
it is the factor model which has been assumed, implicitly or

explicity, in wvirtually all texts on factor analysis since
the thirties (see Schdénemann, 1978, for a long list of such
texts). The definitions (3.1), (3.2) imply at the

covariance level
(83.3) E=A ¢ A' + U2,
which corresponds to (2.5).

This resolution of problem (i) creates two new problems,
the "number of factors problem” and the "rotation. problem”,
which will be taken up in later sections. The main purpose
for introducing the multiple factor generalization at this
point is to have the slightly more general notation (3.1),
(3.2), available when needed for the discussion of the other
two problems, which profoundly affect the theoretical and
psychological interpretation of the factor model.

In (1918), at the height of WWI, G. Thomson, "after
correspondence with Major Spearman” (p.271), published a
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paper he had already drawn wup in 1814, It would be
understandable if Major Spearman had been less in a hurry
than wusual to. see this particular paper in print, because
Thomson demonstrated, with what we would now call a “"Monte
Carlo experiment”, "...that a certain set of correlation
coefficients, which we know to contain no General Factor,
would be claimed by Professor Spearman as giving further
support to the existence of such a factor. There is
therefore nothing to show whether the many cases brought
forward by him really contain a general factor or not (p.
280, emphasis in the original).

To lend substance to this heresy, Thomson "threw in all
5220 dice, in 36 groups of 145 each, to represent ten tests
in a class of 36 boys" (p. 278), in accordance with the
following model: '

He postulated a large number, say m>>p, "group factors”
xx which are uncorrelated with each other and have unit
variance. Each observed test : '

(3.4) y; = = xg.

(where k ranges over a subset of the index set), is the sum
of a random sample of size m;=mp; of the m xx. The samples
defining the i'th and j'th test are drawn independently.
This theory 1is evidently a close relative of Thorndike's
"anarchic” Theory of Bonds. Let us write this model

(3.8) = S ¢,

where £'=(x;,...,%x,) contains all m factors, and m is large

relative to p, the number of observed variables y;. The

rows o;' of the pxm matrix S contain m;=mp; ones and m-my

zeroes in random distribution, i.e. they have the form
(3.86) o;' =Vvpy (0,0,1,0,1,1,0,...,1,0),

(see Appendix Al.1 for an illustration). The covariance

assumption is

(3.7) var(g)

Ine M>>p
so that

(3.8) var(n)

E=ss8"',

in apparent contrast to (2.5) (see Appendix A1.2). However,

the correlation between the i'th and the j'th test turns out
to be

in view of (2.7)
e, In S \<o. 7/

View

(3.9) corr(y;. y;) = 05'0;/Vo; 0y o5'0;.
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i ill approach mwmp;py as a
nereases, the numerator wi r
izn:e;uence of the independence assumption. Hence, in the

limit, the correlation will be

(3.10) Pig = mpgpj/wmpx)(mpj) =.\fpipj-
If one defines w'=(VPrs---s VPp): var{(n) becomes
(3.11) £ == n' + (I-diag(naxn’))

which is identical to the covariance matrix (2.5) predicted
by Spearman’s model.

Moreover, it is well known that MM'=NN' implies t?ateg
and N relate by a partial isometry, wh;9h~c§n b:s ;::§ zero
i by adjoining
i an orthogonal matrix T d
:2§3mns to one of the two matrices until M and N have the
same number of columns. Hence

(3.12) S T = (a, U, ¢, T'T = Inm,

‘for some mxm orthogonal T. This means either.solut;gg can
b: carried into the other, as Garnett observed in (18 .

Thus, although the psychological assum?:;ons :ehi:ir b:§2
Pes i disagreement wi each o .
theories are in complete . th each obher. et

i i h make about T are exactly e e«
?redéizlo??mitey as m goes to infinity, a condlg%optwhlch
™ c i i “large” but inite m,

¥ did not:. insist on. For 2 ;
3:3??;22 1has a tendency towards hierarchy and low ideal

rank) Finally, the two sets of "intelligence factors can
be converted into each other.
i i i lence mean that both
this mathematical equiva
Eiziogicai theories are interchangeéble? Spearmaz
i:gught it did. He naturally preferred hls.:wn thzorymzte
i i because i wa
t should be retained
?riﬁz?mo;eous". On the other hand, ‘Thomson (1920),t:22
liter Mackie (1928), strongly objected to

interpretation with arguments which, so far as I know, have
never been convincingly refuted.

This is how Thomson (1920E‘ p.319?d iTtigizeZ::] w?;?
: "Hierarchical order i.e. idea ]
ri?:;t:mong correlation coefficients unless we take paxnsrgz
: ress it It does not point to the presence of a g?ne1
?:iior nor‘can it be made the touchstone for anykpartt;uti:
‘ i i if we make on
hypothesis, for it occurs even 1 )
i:;:tigi asizmption that we do not know how the correlations

i that the connexions are

d, if we assume only 0
aredoieuiiis emphasis). To choose betwee? both theorlest on
2:2 basis of the parsimony principle (which under Thurstone

assumed the status of an unquestioned dogma, as we shall

see) was unacceptable to Thomson: "If I make the discovery
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that the angles of a quadrilateral are equal in sum to four
right angles, I may not conclude that it is a square. This
is, by analogy, what Prof. Spearman did when he noticed
hierarchical order, and deduced a General Factor. True, the
angles of a square are equal te four right angles

angles, and the
thing may be a square: and similarly a General Factor may
exist. But the marks of a genus do not define the species.

Nor may 1 conclude that I may call it a square because that
is simpler” (p.321, my emphasis).

This distinction between mathematical equivalence of two
models, on the one hand, and lack of equivalence of the
substantive theories they are supposed to model, on the
other, was further sharpened by Mackie (1928). His argument
pivots on the observation that Spearman'’s "g” must
correspond to all of ¢ in Thomson's model, since the
correlation of y; with g is given by a; =Vp;, and p; is the
proportion m;/m of factors xy sampled by the i'th test Yi.
This creates the dilemma of having to explain where the
specific factors come from, after Thomson's factors have
been mathematically transformed into Spearman's "g".

Although the quote from Mackie (1928) is a bit longer
than usual, there are at least three reasons for reproducing
it in full. Firstly, I consider the point at issue as of
some importance not only for factor theeory and intelligence
theory, but also for psychological modelling in general.
Secondly, it would be impossible for me to improve on
Mackie's statement of his case:

"We may venture to make our argument clearer by an
analogy. Suppose that some archaeologists find the ruins of
three temples, one of which had been made of brick and
stone, another of brick and wood, and the third of stone and
wood. Some of the archaeologists might say that in the
building of each temple we see the operation of two factors,
one of which is common to all: this might be the religious
urge of the nation which built them. The factors peculiar
to each of the.,temples might be respectively: (1) Absence of
trees in the locality, (2) want of stone, and (3) abundance
of stone and wood. Others of the archaeoclogists say that
the nation in question possessed skilled builders and that
the three temples are samples of their work, the first being
due to brickmakers and masons, the second to brickmakers and

carpenters, and the third to masons and carpeters. The
first school of archaeologists then claims that the second
theory is but a variant of theirs, for, they say, we can

make a mathematical transformation by means of which the
brickmakers, masons and carpenters are replaced by four
influences, one affecting all three temples and the other
three one each. If it is 1inquired what those influences
are, the reply must be: The general influence is the work of
the whole set of builders; the specific influence in the
first temple 1is the work of the brickmakers and masons
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hindered by the carpenters, and similarly for the others. A
sort of mathematical equation would be:

Brick—-and—stone Temple = {Work of prickmakers, masons and
carpenters working with part of their might) + (?ork. of
brickmakers and masons working with the rest of their might
- Work of carpenters already done).

It would then be open to the second set of archaeologists
to point out that this was Jjust what they said a? first,
except that the carpenters had been brought in to build 'and
then knock down what they had puilt; and that they might
justifiably prefer to think that the carpenters were .never
there at all. As long as they chose to keep their own
hypothesis about the group of builders it would ?e t?ue to
say that their theory could not be regarded as variant of
the other one.

We conclude then that it is only in the most formal
mathematical sense that the Sampling Theory can be brought
in under the Two Factor Theory; that if we adhere to the
hypothesis underlying the sampling theory 'tbe
interpretations we are compelled to put upon the specific
facto}s obtained by the mathematical transformation is such
as to show that these factors are mere mathematical
fiections. Per contra, if, having arrived at the Two Factor
Theory, we make the transformation from it, then the
elements of the Sampling Theory expressed by means of the
transformation are mere mathematical fictions. If either
theory should be abandoned, it 1is not because they are
equivalent” (p-. 820f) .

The third reason for devoting so much space tc Mackie is
a recent reference to him by Maxwell (1972), who seems to
have misunderstood the very point Mackie tried te make.
Maxwell, a well—known statistician, has iately become
disenchanted with "the proliferation of factors" (p.8) in
the Spearman/Thurstone sense, after having devoted fome of
his efforts to developing methods for "estimating them

(e.g., Lawley and Maxwell, 1972, ch. 8). He now favoers
Thomson's ‘theory, and therefore is in .need of a new
justification for "astimating factor scores (p. 7). After

converting Thomson's solution "by simple linear regres;ion"
jnto Spearman’s, he warns us not to interpret ?h? reSLdgal
as a specific factor: “According to Thomson's® sampling
theory, such an interpretation, as Mackie (1928) has shown,
would be inconsistent, and jt is Dbest to think of the
variate e; merely as 2 contrast between the mean value of
the component sampled by {y:l in =& popuiatign of people .anq
the average, g. of all their components (p.5., my emphasis).

Now it seems to me such “"regression estimates” gnd
"contrasts” are exactly what Mackie must have had in mind
when he spoke of '"mere rathematical fictions . The last
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thing he would want us to do is to estimate them. So far as
I can see, there are no factors left to be -estimated once
one adopts the Thomson interpretation: before the
-transformation there is an unknown large number of factors,
and after the transformation into the corresponding Spearman
factors, we are left with a smaller number of mathematical
fictions. What we can, and perhaps sometimes should do, is
compute scores on linear combinations of the tests.
However, such “components” (Schénemann and Steiger, 1976),
are neither factors nor "factor estimates” by any reasonable
interpretation of the term. Let us now ask whether it makes

sense "to estimate factor scores” in the CFM of Spearman and
Thurstone:

4. WILSON: QUESTIONS SOME OF THE ANSWERS

¥When E.B. Wilson, in 1928, reviewed Spearman's
"Abilities of Man”" for Science, he already had a suffiently
long and distinguished career behind him (Hunsaker and Mac
Lane, 1973), that he could afford the luxury of admitting
interest in psychology without arousing suspicions among his
peers. Spearman greeted Wilson with Dbefitting deference:
"If any event is more likely than another to quicken the
progress of psychological mathematics, it is the entry on
the scene of a mathematician so eminent and so free from
prejudice as Professor E.B Wilson” (1829, p.212).

Wilson did not dwell on occasional lapses of rigor which
so often fascinate his modern successors. Instead, he
preferred to look at the larger picture: "Science advances
not so much by the completeness or elegance of 1its
mathematics as by the sigrnificance of its facts. You cannot
upset the findings of the "Origin of Species” either by the
contraposition of your religious convictions or by observing
that Darwin's statistical technique was not up to standard”
(p.244). Having previously (1903) tangled with Hilbert

about "The so—called foundations of geometry”, he was
careful, on this occasion, to be quite concrete: "Try =a
case. Let the marks of 6 students on 3 tests be (the first

columns give the actual marks, the second columns give the
differences from the means)..." (p.2486).

However, it is not certain that Spearman welcomed this
degree of explicitness because, "what we have shown is that
the complete solution [for exact factor scores implied by
the given "marks"”] can be obtained but is indeterminate. We
have no need of harder mathematics than the solution of a
set of linear equations and 1 quadratic equation...It would
be quite superfiuous to introduce this higher mathematics.
involving a probability theory which probably does not apply
anyhow, to make determinate (if it does) that which without
it seems indeterminate™ (Wilson, 18928, p.248).
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In retrospect it may seem odd that it should have taken
almost 25 years before someone noticed that the model
Spearman had proposed in 1904, and which had been
extensively debated by numerous competent people since then,
has a built in indeterminacy which threatens to undermine

the very purpose the model was to serve, ,,t¥€ yea?ly
official registration of the ‘intellective index which
Spearman had so eagerly anticipated and which has become an
established custom by now. If this index is not wuniquely

definable after all, how then can a responsible person "even
conceive the establishment of a minimum index to qualify for
parliamentary vote, and above all for the right to have
of fspring”? And what has factor analysis then contributed
towards a more unambiguous, "scientific”, definition of
"intelligence”, which had been Spearman's main aim?

In order to treat this question in sufficient generality
to encompass the modern factor theories of intelligence, I
shall state it in the context of multiple factor theory. A
clue that not all is well with the CFM is given by the
partial covariance matrix of the common factors, g€, after
all the observed information in n has been partialled out
again. This partial covariance matrix,

var(£) — cov(g.n)var-t(n)cov(n,E)

(4.1) vard(gin)

¢ - YA'STLAY # 3,

is not zero for the conventional factor model (3.1), (3.2).
This raises the question where the implied residual
variables come from which unexpectedly emerge in (4.1). The

arswer is that these additional variables have to be pulled
titerally out of a hat: they must be randomly chosen in such
a way that they are uncorrelated with the observed test
variables y; in ., so that the latent variables §, { <can
satisfy (3.1), (3.2) for a given 7. In the most general
+echnical terms, the answer has been stated by Guttman
{1858) for the «correlated multiple factor case: in order
that the vector of common factors, £, and the vector of
specific (unique) factors, ¢{', satisfy the CFM (3:1), (3.2),
for a given observed test vector n, and (arbitrarily chosen)
nonsingular var(g§)=¥%, they must be constructed as

(4.2) &€ = &y + £2: £ = §1 + T2,

where £, and {,; are linear functions of the observed tes@s
y; (and, thus, functions of the observed teftscores Yij in
the sample. See Guttman, 1955, or Schénemann and Wang,
1972, eqs. (2.12), (2.13) for the defining weights). :The
vectors ' £,, and {3, on the other hand, are linear functions
of a second set of m independent random variables
¢'=(sy;,....,5n) which are uncorrelated with n, and which
satisfy the covariance conditions
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(4.3) var(o) = I_,. cov(n.,a) = ¢.

These constraints leave a great deal of freedom for choosing
o and, consequently, for defining the "factors”™ £, and ¢,
given n, and hence these factors are "indeterminate”. An
obvious question to ask is how indeterminate they are in
practice. To answer it, one needs a measure of the
indeterminacy. Guttman {1955} proposed the ‘minimum
correlation between equivalent facteors”, '

(4.4) px = corr(xy, xx*) = 2yx T~ lyy ~ 1,

where v, is the k'th column of the factor structure G=A¥,
for assessing the extent of the indeterminacy. This index
is simply the correlation between the k'th common factors of
a pair of two equivalent solutions £, £* which have been
selected so as to be minimally correlated among all possible
solutions.. This index varies in theory between -1 and 1.
Schbnemann and Wang (1872) found that it varies over this
range also in practice. This means that in many cases the
factors are very poorly defined by the observed vector n.
In the intelligence domain, the minimum correl&tion will
usually not be negative, and it may be reasonably high as
long as not too many factors are "retained”. However, as it
becomes necessary to extract more factors, e.g., to satisfy
a statistical c¢riterion of fit, then the last few factors
may be very poorly defined. A realistic illustration of
what can be expected for a currently pepular intelligence
test, the WISC, is given in Appendix A3.4.

In order to illustrate the indeterminacy issue as
concretely as possible, a complete factor analysis of the
Wechsler Adult Intelligence Scale (WAIS) 1is presented 1in
Appendix A2, together with the results of a regression
component analysis of the same data. Following convention,
the original correlations were factored for two common
factors, which were rotated (obliquely) to simple structure.
The resulting Verbal (V) and Performance (P) factors are
highly correlated (.78). Although the chi-square test
rejects the CFM for only two factors and would require five
factors for a statistical fit for these data, the nmore
conventional - two factor solution is preferred here for the
sake of illustration. The introduction of more factors
would create more new problems than it would solve,
including a loss of estimability of the factor pattern
itself. The dubiocus merits of the chi-square test will be
discussed in section 6. The estimated factor patterns, A,
U, and the factor intercorrelations ¥ were used to construct
20 "observed scores” Yijg which reproduce the estimated
covariance matrix EZ=AYA'+U2 exactly (A3.2). Two sets of
minimally correlated equivalent factor scores, (X, 2Z), and
(X*, 2Z*), which, together with (A, U) reproduce Y equally
well, and which both have the same intercorrelation matrix
(¥ for the common factors, and I for the specifics) are
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given in A3.1. To simplify the interpretation of the
(intelligence) factor score discrepancies in X and X*, both
were converted into IQ's (A3.3, setting u=100, o=15).
Although the minimum correlations. for both factors are
fairly high (.89, .76), ‘there are noticeable discrepancies,
.especially between the two sets of equivalent “performance
1Q’'s” (2nd and 4th column in A3.3). These (underlined)
discrepancies are not due to errors of estimates in the
usual sense, because they would remain even if Y were to
remain perfectly stable upon replication. The two columns
labelled x,;, %3, OF, equivalently, the next two columns
labelled x;%, x,* are the exact intelligence factor scores
for the 20 ficticious subjects, by the definition of the
CFM. Hence it is quite misleading to say “"factorscores have
to be estimated because they cannot be computed exactly”.
Both sets X, X*, are exact.

It stands to reason that only after the algebraic facts
of the indeterminacy problem are clearly understood does it
make sense to try to understand what they mean.
Regrettably, these simple facts have been carefully hidden
from the view of the unsuspecting users of factor analysis
by virtually all textbook writers since the thirties,
beginning with Thurstone (1938). Two rare exceptions are
Thomson {(1951) and, eventually, Mulaik (1972). The very
influential texts by Harman (1980, 1967), which dominated
the field in the post-Thurstone period, together with the
more applied texts by Fruchter (1954, 1964), Cattell (1952)
and others, never mention the indeterminacy problem at all.
This is remarkable‘ in view of the fact that it had become
the focus of a lively debate all through the thirties (see
Steiger and Schdnemann, 1978, for a historical review),
which included a number of well-known and established
scholars of ungquestioned technical competence, among them
Wilson, Spearman, Thomson, Heywood, Piaggio, Irwin, Camp,
Ledermann, and, eventually, Kestelman and Guttman - but
never Thurstone, so far as I know.

That the subsequent collective amhesia was not entirely
accidental has been demonstrated repeatedly, for example
when Steiger and I tried to publish one of the implications
of the indeterminacy which had not been noticed before:

The factors xy ., z; of the CFM can always be chosen so as
to perfectly predict any criterion whatever, regardless how
it correlates with the observed variables y;.

The proof of this curiocsity is quite simple {(for details
ard extensions see Schdnemann and Steiger, 1978; Steiger,
1878): iet the factor analysis be based on a set of
intelligence testscores y;j for N pupils, and assume, for
convenience, that Spearman’'s TFT fits these data perfectly
for one general factor g. Now suppose we wish to predict
the shoesize of the fathers from the pupil’'s intelligence

an

scores g; (x; in the notation of (3.1), (3.2)) and the
unique factor scores z;; jointly. Let this criterion be w.
After the part of w, if any, which correlates’ with the
determinate part (&; in (4.2)) of g has been removed, the
residual will be uncorrelated with the observed scores y;;.
Hence we can use it as the additional random variable s
needed-to define g, §{, so that the multiple correlation of
shoesize with the intelligence factor g and the specific
factors z; will be unity. When we submitted this result in
a short Note to the British Journal of Mathematical and
Statistical Psychology in 1976, the editor, despite his best
efforts over a period of 23 months, was unable to reach a
decision because he had “failed to find anyone willing to

give you 'technical reviews' (your letter March 13th). The
brief comments I have question 'motivation’' or ‘what is
perceived to be the problem’ rather than your algebra”

(BJMSP, 1978).

Spearman, in his time, tried to meet Wilson's challenge
with some rational argument. He was quick to notice that
the problem would "vanish in the limit"” if it were " possible
to lengthen the testbattery indefinitely without incurring
further common factors. As Guttman (1958) has shown, this
condition can be further weakened, in the multiple factor
case, by requiring only that the ratio m/p of the number of
common factor relative to the number of observed variables
approach zero in the limit as p goes to infinity. A very
simple argument which shows this was given by Schdnemann
(1971)., who found that the "average minimum correlation”
obtained wupon averaging the correlations (4.4) for the
common factors together with the analogous minimum
correlations for the unique factors z;

(4.8) 1 = (p-m)/(p+m) = (1-m/p)/(1+n/p).

is a constant which does not depend on the data, Y, A, or U,
at all. It, therefore, can be computed as soon as m, the
number of common factors is known. It is immediately
obvious from (4.5) that this average, and hence all minimum
correlations, will go to one as m/p goes to zero.

However, this is more easily said than done. Not only
because it presupposes tireless patience on the part of the
subjects who take the tests, but also because one often
finds that adding more tests adds more factors. Moreover,
as Mulaik and McDonald have recently (1978) shown, even if
it were possible to find a suffiently large number of tests
to suppress the indeterminacy without incurring further
factors, the eventual limit will depend on the tests which

are added. Investigator A, and investigator B, starting
with precisely the same battery of p tests y;, will end up
with two quite different determinate "g"'s. Hence further

conditions have to be added before the indeterminacy problem
can be made to disappear "in the limit" on paper.



342

Following up on earlier groundbreaking work by McDenald
(1872, 1974), Williams (1978) reinvestigated these
"stability conditions” in a paper entitled "A definition for
the common— factor analysis model and the elimination of
problems of factor score indeterminacy” (see Kruskal, 1976;
Guttman, 1875: Schénemann, ig78, for some muffled echoces on
McDonald's earlier attempt to eliminate this problem).
Williams proposes a revised formulation of the CFM Yhicb
includes these conditions as part of the definition of "the
factor model as a stochastic process which, he hopes, may
eventually converge on a set of uniquely defined factors as
the battery is lengthened. After dismissing earlier
formulations of the factor model, e.g. the CFM, as
"trivial”™ (p-. 295: see alsc McDonald, 1972), Williams
arrives at a number of intriguing conclusions which should
provide food for thought for the intelligence community: "If
the space of all random variates to be-considered in the
definition of factor scores is essentially contained in the
span of X;, i=1,2,..., then either a model exists with
essentially unique scores or it does not exist” (p. 300).
He explains our failure to have noticed any of this before
with the theory that, (i) "no adequate model has ever been
set out before” and (ii) "the concept of a random variable
was not understood well enough” (p. '303).

This explanation does not change the fact that the CFM
has been wused for several decades by legions of research
workers, nor does is tell us what to do with the dubious
legacy of empirical and theoretical results they have left
behind, including, as it were, most extant intelligence
theories. The  practical implications of these results may
not always have been "trivial” for those whose careers were
decided on the basis of theoretical premises which now are

lightly dismissed as no longer valid. Another weakness of
Williams ' theory is that it does not adequately explain why
many noted statisticians, e.g.., Lawley, Maxwell, Jéreskog.,
Anderson, Rao, to name a few, had overlooked the
indeterminacy for decades, just like their psychological
peers. Many of them worried how best to estimate (the

indeterminate) factor scores, and the regression Yeights for
factors which have the absurd properties Schonemann and

Steiger were not supposed to make public. And la;tly. such
an explanation is somewhat unfair to E. B. W1¥son, whom
Williams does not mention. Wilson knew the meaning of a

"random variable” as well as anyone: he had_anticipated the
modern formulation of a "confidence interval” (1827). and he
had served as President of the American Statistical
Association in 1828.

Williams does not reveal how he intends to test’ his
stability constraints with fallible data. It is therefore
difficult to know how he found out that "factor analysis
studies wusually involve many more variates than common
factors of interest”. It would be most fortunate if  his
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conjecture were true, because "these results would appear to
indicate that stable sets of factor loadings can easily be
identified in practice” (p. 306). Williams' approach has
the further advantage of completely circumventing the
nagging power question, to which I shall return in section
6: what is the probability that we accept the Tfacteor model
when in fact it is false? If it should turn out that this
problem is more serious than its widespread neglect
suggests, what then? Are we then to continue Spearman's
recommendation to decide on the basis of his intellective
index who may have off-spring or not?

Like Williams, Mulaik and Mcﬁonald (1878) appear to be

unperturbed about the potentially adverse social
consequences erronecus intelligence theories may have (see,
e.g., Kamin, 1874, ch. 1): "Thus with a well-defined
behavior domain, researchers should be able to treat the

hypothesis that the domain has a determinate factor space as
a null hypothesis to ©be accepted until data inconsistent
with it is obtained” (p. 182).

$. THURSTONE: SIMPLE ANSWERS FOR MOST QUESTIONS

"Twenty years have now elapsed since Professor
Thurstone's ingenuity pulled the factor problem out of its
tetrad difference quagmire. Most of us have watched
Thurstone’'s brainchild grow...Indeed, even as an infant, it
was forced to throw aside its swaddling clothes in order to
kick back at the Spearmans, the Tryons, the Anastasis and
others who sometimes rightly, oft-times wrongly, pointed a
finger at supposed imperfections. The youngster weathered
more or less successfully the many storms it had stirred
up...and was ready for the sober coming of age evaluation of
its strengths and weaknesses by Dael Wolfle” (McNemar, 1951,
p. 353).

As this quotation suggests, the intervention of Thurstone
in the early thirties marks a major turning point in the
history of factor theory:

(i) He popularized the multiple factor generalization of
Spearman’'s TFT for the description of intelligence and
advocated its use also in other content areas "as a general
scientific method” (1947, p.55), rather than viewing it as a
mathematical theory for intelligence, as Spearman had
originally intended it.

(ii) He made numerous algorithmic contributions to simplify
the then arduous task of performing a factor analysis. He
thus paved the way towards the analysis of much larger data
sets than had been previously possible.
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(iii) He contributed the criterion of "Simple Structure” as
a guiding principle for resolving the rotational
indeterminacy of the CFM when m>1: since, in this case,

(5.1 £=AA'+U2=A®A*"+U?, with A*=AT for all orthogonal T,

some such principle is needed to select the factor pattern A
when there are more than one common factor: “The simple
structure concept was invented, if anything so simple can be
called an ‘invention’, as a compromise with this problem.
It was the simple idea of finding the smallest number of
parameters for describing each test. In numerical terms
this is a demand for the smallest number of non—-vanishing

entries in each row of the oblique factor matrix...This
simple idea has turned out to be =2 much more powerful
analytical device than was at first anticipated” (p. 333,

his emphasis).

(iv) He developed a theory of "higher order factors” as a
natural extension of this simple structure principle: in
many cases (which include intelligence test data) simple
structure can be improved by admitting correlated common
factors, so that

(5.2) £=AVA'+U2, with var{(g)=¥=1,.

In this case ¥ can be factored again for a smaller set of
"second order factors” which then, presumably, have the
status of even more fundamental variables than the "primary
factors” xy in £.

In addition, I believe it is necessary to mention two
further aspects of Thurstone's work which also left a
longlasting mark on the future course of factor theory, and
psychometrics in general:

(v) Thurstone's scientific perspective could be described,
perhaps, as solipsistic. In taking credit for the m~-variate
generalization of Spearman's TFT ("...1 discovered that the
tetrad was merely the expansion of a second order mineor, and
the relation was then obvious...If the second order minors
must vanish in order to establish a single common factor,
then must the third ordér minors vanish in order to
establish two common factors, and so on?" (1947, p. iv)),
he did not mention that much the same thing had already been
shown by Garnett in (1919) and had been elaborated upon in
Dodd's (1828) review:’ "The generalized criterion for n
variables to bée factorable into n-m factors is that every
multiple correlatien ratie or coefficient of the (n—m)th
order shall equal unity. In the case of rectilinear
regression, the more convenient criterion is that every
discriminant of the (n-m)th order shall equal zero" (Dodd,
1928, p.2785).
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Similarly, in discussing various “regression methods for
estimating factor scores” in (1938, ‘'Ch. 103 and 1947, Ch.
21) Thurstone does not mention Wilson's work ~esn “factor
indeterminacy, which might <&asE doubts on the logiecal
justification of such *estimatien”, nor Piaggio's (1831) or
Thomson's (1934) work on the same topic, which had covered
the samé algebra from a more sophisticated point of view:
"Spearman’'s case is exactly the same [as the regression

case] except for the important fact that he has no
criterion, no measure of ‘g’ except through the team of

tests themselves...This distinction between the two cases
may appear . to be subtle, but it seems a proper distinction
to draw” (Thomson, 1934, p. 94f; ny emphasis).

As a result, many earlier contributions to factor theory
were eventually all but forgotten. They have only recently
been retrieved again (see, e.g.. Schdénemann, 1971; Steiger
and Schdnemann, 1978), against considerable resistance,
because in the meantime a great deal of effort and personal
prestige had been invested into pursuits which have led
nowhere. This waste could have beeen avoided  with 'a more
openminded attitude towards Thurstone's predecessors.

(vi) Thurstone, on occasion, used unconventional language
which was apt to create the impression of scientific
achievements for which he had little or no empirical
evidence.

Problem (v) was probably aggravated by Wolfle's (1940)
"Factor Analysis to 18407, to which McNemar alludes in the
above quote. Although this historical account "provides the
specialist in factor analysis with a single list of
publications of the 1828-1940 period...only the more
important or the more pertinent ones are referred to in the

review” (p.B). Among the casualties of this eclectic
treatment were all discussions of factor indeterminacy,
which had appeared during this very review period, together
with most other contributions of a more critical nature by
Wilson, Camp, Spearman, Mackie and others. Since it was
"the purpose of this review to survey the literature that
has accumulated since Dodd's 1928 review”™ (p.1), a more

appropriate title might have been "Factor analysis from 1928
to 1940". The lack of specificity in the title may have
contributed to the subsequent neglect of Dodd's excellent
and far more complete review of the earlier history.
Neither Thurstone (1947) nor Harman (1967) mention it,
though both refer to Wolfle's.

An illustration of (vi) is Thurstone's ambiguous use of
the term “law”, =as in his "Law of Comparative Judgement " .
He stated it in a paper with this title (1927a) as a “law™,
whose "derivation will not be repeated here because it has
been described in a previous article” (p. 41). But in the
previous article (Thurstone, 1827b), this "law" is only a
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"reasonable...assumption subject to verification in every
case” (p. 24). There is no additional empirical evidence
in either article to justify the semantic transition from a
"reasonable assumption” to a "new psychophysical law”
(1927a, p.39). Nor has there been much progress since on
he guestion how this "law” can be "verified”, or aE.leaEt
differentially falsified against entirely different ~laws .
e.g. Luce 's Choice Theory, which usually explains the saye
data equally well. However, in the pursuit of this
difficult question Burke and Zinnes (1985) found that some
of Thurstone's (1927¢c) data fit neither "law”.

A charitable interpretation of this loose choice of words
might be that Thurstone meant by "law” not a r§plicable
empirical relationship of some generality (as, in, e.g.
"Weber's Law"), but rather a normative law, a guiding
principle. The trouble with such semantic laxity is that it
makes it difficult to know whether a stated result is still
in need of empirical confirmation or not. At least this
proved difficult for many of Thurstone's disciples.

An important example of this is Thurstone's celebrated

Simple Structure principle, which virtually all of bis
foliowers adopted with little if any attempt to test its
substantive validity. Numerous programs were written in the
late B0's and early 60's which simply imposed this *law" on
the data. Since Thurstone intended the Simple Structure
principle as a device for defining the factors as

intersections of hyperplanes, it might seem reasonable that
they first would would have checked whether there were
indeed well—defined hyperplanes in the data.

There is nothing intuitively obvious about the
expectation that all test vectors should align themselves in
linear subspaces, e.§8. in 3 intersecting planes, if there
are three common factors. If one shoots a burst of
insecticide with a spraycan into the air one would be rather
surprised if the droplets were to arrange themselv?s in 3
planes. It is more likely that they will uniformly fill out

a roughly conical part of the space. This expectation is
the baseline against which Bargmann (1955) tests the
actually achieved simple structure: he stretches each

testvector in the common factor space to unit length and
then checks how many of them are contained in the circular

disks defined by the m subsets of m—-1 factors. On the
hypothesis of a uniform distribution of the extended
testvectors on the surface of the unit sphere, one can
compute the probability that r out of p test vectors will be
contained in a disk of an arbitrarily chosen width. Before
claiming Simple Structure, one should at least make sure

that there are "significantly more” testvectors in each disk
than can be expected by chance alone.
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The significance of Bargmann's contribution eluded most
factorists who relied on the simple structure principle for
defining their factors. An exception was R. B.  Cattell:
"Nevertheless, by any standards of true scientific procedure
an SS _significance test is an essential part of a factor
analytic experiment” (Cattell, 1978, p. 176). However, on
using it, Cattell soon discovered that “the Bargmann test in
practice has turned out to be a severe critic, and it is ne
exaggeration to say that about half of the investigators
publishing studies would have their conclusions wiped out
thereby — which is perhaps why a test of significance of the
obtained simple structure is so rarely published” (p. 175).
For example, on applying Bargmann's test to Thurstone's
celebrated Primary Mental Ability study (1938), one will
find that none of the thirteen hyperplanes reach
significance at the .05 level. Although the situation had
much improved 1in the 1941 replication of this study by
Thurstone and Thurstone (all but one of the ten hyperplanes
reach significance). the reduced study for 21 selected tests
again gives only 4 out of 8 significant hyperplanes by
Bargmann's criterion. The point is not, of course, that
sometimes our hypotheses turn out to be false, but rather
that the post—Thurstonian generation of factorists has acted
as if their hypotheses always had to be true.

Very much the same uncritical attitude prevails, to this
day, in regard to the second hypothesis implied by
Thurstone's multiple factor generalization of Spearman's
TFT: How are we to decide how many common factors are in the
data? And can it ever happen that the CFM simply does not
fit, regardless how many factors are postulated? The answer

to the second question is, unfortunately, "no”. This is in
contrast to Spearman's model, which, at least in principle,
was either true or false. Thurstone's "generalization™ can

only be conditionally falsified, relative to a prespecified
number of common factors mg.

Prior to the development of the presently popular
iterative algorithms for fitting and testing the multiple
factor model, one simply extracted as many common factors as
seemed necessary to give the residual matrix a pleasing
appearance. Usually this required about a third =as many
factors as observed variables.

More recently, it has become customary "to guess” mg in
advance, and then to test the hypothesis Hp: m=mg
statistically after my, common factors have been extracted.
Before examining the merits of these statistical tests more
closely in the next section, I would like to discuss briefly
one of the presently popular devices for guessing the
correct number of common factors, which 1is sometimes
affectionately called "Kaiser's Little Jiffy":
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"It is proposed, then, that m, the number of factors to
be retained in the varimax method be given by the number of
latent roots of the correlation matrix under consideration
which are larger than one...This rule of behavior for 'when
to stop factoring’ is purely logical ~ there is, for
example, no readily apparent mathematical rationale for
choosing it. It does., however, seem to reflect the sort _of
thinking which is. implicit traditionally in factor analysis
(Kaiser, 19856, p. 10). In 1974, Kaiser and Rice thought
they had discovered a more convincing rationale for this
rule in Guttman (19854): "The writers adopt as the answer to
the c¢rucially important question of the 'number of factors’
Guttman's (1954) classic lower bound, the index of the
covariance matrix (with =zeroes in the diagonal) wunder
consideration. This answer is the same as that given by
Kaiser's (1956, 1960, 1970) extensively used 'eigenvalues
greater than one of R'" (p. 111).

This attractively simple answer to the crucially
important number of factors question has indeed been
extensively used. Maxwell (1972), for example, tried this
“popular rule, attributed to Guttman (19834), for

interpreting the results of a principal component analysis
[which] is to retain only those components for which the
latent roots are greater than unity” (p. 13). Many
computer packages have incorporated this simple rule as a
stock answer for the crucial question how many factors to
retain in the CFM.

While it cannot be ruled out that this popular rule may
occasionally give the correct answer (see Appendix A4 for
some data on its performance when the number of factors is
known), I doubt that Guttman has ever recommended it or
supplied . the mathematical rationale for it. Since we are
fortunate enough to have him sitting right here, we can, of
course, ask him about this.

One reason why this popular rule on deciding on the
number of common factors is apt to be unreliable is that it
does not make much sense statistically:

Consider an N—-fold sample from a population with
covariance matrix Z=Ip. The. sample correlation matrix R
will be different from the identity matrix with probability
one for any finite sample size N. Since the sum_of the
latent roots equals the trace of R, which is p, their
average must be unity and, since R#l, some roots must be
larger and some must be smaller than one. Hence, tha number
of common factors according to Kaiser's rule is at least
one. This is hardly a "lower bound ® for the true number of
common factors, because the true number of factors 1is zero
in this case.
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The reason for this discrepancy between Guttman‘s theory
and Kaiser's and Maxwell's practice is that in (1954)
Guttman was not interested in the sample case: "In the
present paper, we do not treat the problem of ordinary
sampling error, that is, of sampling a population of

respondents. We assume throughout that population
parameters are used, and not sample statistics” (p. 151).
.Far from wanting to contribute to the growing

mechanization of factor analytic research by means of this
or that Little Jiffy, Guttman was actually trying to sound a
warning against the unreflecting acceptance of Thurstone's
parsimony principle as the sole basis for the post—
Thurstonian phase of “exploratory factor analysis”: "The
question as to whether a parsimoneous common—factor system
exists at all for a given set of data remains a fundamental
one to be reexplored in each empirical case. Current
computing procedure which aim at stopping at some relatively
small number of common factors may prejudge the issue” {(p.
160). Although this was written 25 years ago, this is
precisely what most presently popular computer ’‘packages
encourage the user to do.

8. JORESKOG: ANSWERS ONLY HALF THE QUESTION

In this section I wish to return once more to the
"crucially important number of factors  question”. This
question 1is indeed important if one takes the factor model
at all seriously as a mathematical theory for psychology:
"If we grant that men are not all equal in intellectual
endowment and in temperament and if we have the faith that
this domain can be investigated as a science, then we must
make the plausible and inevitable assumption that individual
differences c¢an be conceived in terms of a finite number of
traits, parameters or factors” (Thurstone, 1947, p.58).
However, as Guttman (1954) has observed, "psychologists
cannot invoke general algebra nor can algebraists invoke
psychology to make out an a priori case for small rank” (p.
302), because "algebra and psychology both indicate large
rank to be the more proper null hypothesis problem for
mental test data” (p. 307). Another reason why we should
be more careful in the future with making "plausible and

" inevitable assumptions” without serious attempts to test

them has been stated by Russell: "The method of
'postulating’ what one wants has many advantages; they are
the same advantages of theft over honest toil" (1819, p.
71). Since psychology in general, and the IQ industry in
particular, have of late increasingly come under public
scrutiny we may not much longer be able to afford to act as
if we did not know this difference.
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There are other, more technical reasons for being
concerned about thecrucial number of factors question if one
subscribes to the Spearman/Thurstone interpretation of the

factor model. For example, if the true number of factors is
overestimated, then the factor pattern becomes unestimable
statistically, because then it is no longer uniquely defined
(Anderson and Rubin, 1956). Similarly. the success of
Williams' attempt to eliminate "...the so—called problem of
factor score indeterminacy” (ies8o0, P- 303) hinges
critically on the number of factors question, because he

"will always assume that for every p it is possible to write

(8.1) V, = F,F,' + U,U,’

where F_ is a pxr real matrix” (p. 294, my emphasis. His V
stands for my Z. The subscript denotes the number of tests
in a given study). How are we to test this assumption in

practice which implies, among other things, that the number
of factors, r, (my m), does not change with p?

On paper the answer to this question is deceptively
simple. It has been worked out a long time ago by Lawley
(1840). However, few have bothered to ask how good this
answer actually is. Since the CFM (3.1), (3.2) implies that
the partial correlation matrix

(6.2) corr(nlg) = U-1(= - A A")U-! = 1.,

is diagonal, this necessary condition <c¢an, at least in
principle, be tested as a statistical hypothesis in
applications of this model if one appends the usual
distribution assumptions of multinormality (e.g. Lawley,
1840; Howe, 1955; Bargmann, 1957).

Sophisticated and expensive computer algorithms for
performing factor analyses within such a presumably more
rational statistical framework have been widely used in the
social sciences for the last 15 years. Bentler (1980) gives
an up-to—-date summary of these developments.

These programs provide the user with a chi-square test of
fit which permits <control over Type I Error. However, if
one is at all concerned about the social consequences faulty
psychological models have had in the past (e.g., Kamin,
1974), and may have in the future (e.g.. Jensen, 1969), then
it would seem rather obvious that Type II Error, the error
of promulgating an incorrect theory, is the more important
problem. Surprisingly, however, after the promising
beginnings made by Browne (1968) and Linn (1968), studies
which critically evaluate the power of these tests are hard
to find. To worry about Type I Error when testing models,
just because this error happens to be easier to contreol, is
like searching for a lost dime under a lamppost, just
because the light is better there.
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It was therefore a welcome change of pace when Geweke and
Singleton recently (1980) published the results of a Monte
Carlo study designed to evaluate the performance of the
likelihood ratio test (LRT) of unrestricted maximum
likelihood factor analysis (UMLFA) in small samples. They
generated two population covariance matrices according to
the CFM (3.3) {(with 9=1) for the factor patterns

4 4332
(6.3) A;," = (44332), A, =
- 12212

and the matrix of unique variances
(6.4) diag (U?) = diag (2.0, 1.66, 1.83, .66, .83).

On drawing random samples of various sizes and
factoranalyzing the resulting sample covariance nmatrices,
the authors arrived at the following overall! conclusion:

"The likelihood ratio test has considerable power even
when sample size is only 10. In the experiment reported
here, the first factor explained 70 percent of the variance
of the indicator, on the average, while the second factor
explained 22 percent of the variance; yet even with a sample
of only 10 observations the one factor model was rejected at
the B percent level in 24 percent of the replications” (p.
138).

The concern of these authors for the important and
somewhat neglected power problem in UMLFA is a positive step
which, hopefully, will be followed up with similar studies
in the future, to enable users of such programs to evaluate
their merit on more solid grounds than blind faith (see
Steiger and Lind, 1980, for some recent work on this
problem}. However, future studies should try to avoid a
flaw which impairs the practical relevance of the Geweke and
Singleton study: their generating unique variances (8.4)
imply for the factor pattern A, communalities which are very
unlikely to arise in real life: the average communality is
.83. :

A rough estimate of the communality range encountered in
the social sciences can be gleaned from a review of some 68
factor analytic studies conducted in the forties which has
been compiled by French (1951). The distribution of the
average communalities for the 61 studies with admissible
communality estimates is given in Appendix AS.1.

In no case does the average communality reach the valu=
employed in the Geweke and Singleton study. The two highest
values stay well below .78, and the average is around .55.
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To obtain an idea what the power of the LRT might be for
the factor pattern A, in (6.3) for communalities in the more
typically encountered range, random samples.were drawn from
multinormal populations with covariance matrices

(6.5) £y = AzA;’ + qx U2,

for various values of the multiplier qx, which controls the
effective average communality in the population. 200 sgch
samples were reanalyzed for qxy=1 (i.e. in exact ac?ord with
the population matrix selected by G?wek§ an? Singleton)
under Ho: m = 2, to estimate the null distribution of the
test statistic for A,, which has rank 2. The rest of the
simulation dealt with the (incorrect) hypothesis

(6.8) He: m = 1,

to assess the power of the test as a function of the average

communality for fixed Aj,. In all cases but one the sample
size was fixed at N=30. The number of replications for each
qy was 200. The UMLFA algorithm was written by Browne
(1989).

The results of this replication of the Geweke and
Singleton study for varied communality parameters are
portrayed in Appendix ABS.2 in terms of the' cumulatlye
proportions of the probabilities associated with the chi-
square statistics obtained on reanalysis of the sampled
correlation matrices. The data points are based en %OO
replications each, té convey an impression o? the stability
of such empirical estimates for 100 replications, the number
employed in the cited study.

Although the power estimates have not vet fully
stavilized, the trend is sufficiently clear to warrant an
overall conclusion which is at variance with that drawn by
Geweke and Singleton. The left hand side of the graph.AS.z
gives the power estimates for their population cov?rlance
matrix for N=30. Geweke and Singleton found that "for 30
observations the...proportions [of rejecting Hy at the .08
and .01 level] were 63 and 42 percent, and for 150 and 300
observations the one factor mode! was always rejected at

both significance levels”. Superficially, the present
reanalysis seems to corroborate their finding, because at
the .1 level the power was estimatgd as .80 and .79 for each
of the 2 runs with 100 replications. «

However, as the graph shows, this impressive result _is
tied to the unrealistic choice of the particular population

covariance matriz by Geweske and Singleten. As can be seen
from the graph, the power fades rapidly as the average
communality approaches a more realistic range. When this

value attains .72, which is still at the upper tgil of the
distribution for the French summary, the power estimates for
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.1 level tests are in the upper 10°'s or low 20's. For the
modal value of the French distribution (h2=.55), the power
barely exceeds the chosen level of significance. This
disappointing performance of the test of fit improves only
slightlyy when the sample size is raised from 30 to 100. At
this point a .2 level test has a chance of 1 out of 3 to
detect " that Hy: m = 1 is false. A theoretical reason for
this intimate relation between the power of the LRT in UMLFA
and the average communality is given in (Schdnemann, 1980).

Although these empirical results are conditional on the
particular factor pattern A, selected by Geweke and
Singleton, they nevertheless raise sufficient doubts about
the value of the LRT in UMLFA in general to call for
further, more representative investigations of the actual
statistical merits of maximum 1likelihood algorithms for
factor analysis, which, so far, seem to have been largely
taken for granted.

Thus, although psychologists have studied the factor
model for more than 50 years, and statisticians have joined
them for at least 25 years, we still do not know how to test
the basic assumption this model is built on with any
stringency. To be precise: we now have expensive computer
programs for evaluating the probability of falsely rejecting
a model we would like to accept, but we still have no idea
how often it has been falsely accepted in the past.

7. JENSEN: CRYSTALLIZED ANSWERS TO FLUID QUESTIONS

"For the first time, intelligence testing has a firm
foundation, and for the first time there is a genuinely
operational definition for intelligence. The assessment of
the intellectual resources of man can now take on features
of psychoengineering...Talents of numerous kinds can be
discovered in individuals, and their development can be
promoted because their properties are known. Optimal

development through education and optimal placement of the
individual within the scheme of things c¢an now be more
nearly achieved, and these steps should contribute to the

satisfaction for all concerned” (Guilford and Hoepfner,
1971, p. 361).

Between Guilford and Hoepfner's echo of Hart and
Spearman’'s prophesies in (1912; see section 2) lies half a

century of intelligence research. "Few topics have been as
avidly researched, at all levels of sophistication”
{Wechsler, 1971, p. 50). During this time, Wechsler's test

"has been administered to millions of patients by clinicians
around the world, in many languages, and in many countries
on both sides of the iron curtain” (Edwards, 1874, p. 428).
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in the last two decades or so we_have witnessed a
groB?:; iense of disillusionment both with most ex;:;%
intelligence theories (e.g.., Tuddenham, 19623 Hudson: 1 )
and with the results of the post—-Thurstonian pgrxod o)
"blind factor analysis” {(Mulaik, 1272, ». 9; Mulaik, 1878
in general. In his delightful personel account Hudsgn
summarized his frustations this way: It can scafcely 'e
coincidental that psychologists who have measured children's
intelligence have armoured themselv?s to a greater extent
than any other with the protective magic of number. Nor zin
it be coincidental that in the course of half a ?entury. z
mental test movement has told us little abou§ chxldrev tba
we did not already know, but has made a major contribution
in the field of statistics” (1872, p.55).

In the preceding pages I have ¢tried to. show that tﬁe
method of factor analysis, which Spearmén proposed i? ? e
beginning of this period for operatlona!ly defining
"intelligence", has been misunderstood and misused by m§n§
researchers in the intelligence field. I.have.further trie
to show that this method does not'achxeve 1t§ §e§1gnated
objective of providing an opergtl?nal def%n1t1on of
"intelligence”, and that this method is b§seg with numerous
problems of its own which only now are beginning to surface
again, after they had been ignored for several decades.

Recent events have also drawn public gttent;on to Fhe
intelligence field which can no longer be 1ignored (Kamin,

1874; Hearnshaw, 1979; Nairn, 1980). These ev§nts are
unrelated to the technical deficiencies. I Thave élscussed
here. In particular, dJensen has stirred wup widespread

controversy with the views he eﬁpressed in his (1869
Harvard Educational Review article "How much can ye'boost IQ
and scholastice achievement?". He has drawn cixtlclsm both
from outside and from within psychology: Arthur Jensen
speaks to many of us - I hope I am not among them, but who
can be sure?" (Hudson, 1972, p. 123).

I believe some of this criticism may'be unfairly directed
at Jensen. Although his conclusions may po? be
representative of his field, his methods for arriving at
them are. Not being a specialist in me?hodology, Jensen has
to rely, as have many others before him, on r?seérch tools
others have put at his disposal, and on metﬁodoxog1cal myths
others have generated for him. According to one modern
text, "the formulation of the factor model approache§ that
of gquantum theory"” (Rummel, 1970, p.28). For Rummgl fic:os
analysis is a general scientific method for a?aly21ng ‘1;43
(p.13). These are almost exactly Thurstone's words ¢ 7.
p. 55). The uncritical accepta?ce» of such ~myths hxs
widespread, because they are convenient and'enoblln;‘ They
are convenient because they promise a m?chan1cal device for
conducting research. They are enobling because ?hey lend
the mantle of scientific legitimacy to unproven conjectures.
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The technical jargon of the method of analysis can be used
to imbue isolated facts of questionable reliability and
dubious relevance with added significance. Take, for
example, the following factual observation by Eysenck:

"Eskimos, living in the icy wastes f{ar above the arctic

circle, score at or above white Canadian norms on the
Progressive Matrices” (18973, p. 484) . There is little
dispute over this and similar facts. The dispute revolves

around what they mean. In and of itself the fact that
Eskimos score the same as some other group on a particular
test is of no interest or consequence whatsocever. It is not
clear, for example, what possible benefit the Eskimos derive
from their performance on this test, other than a citation
by Professor Eysenck. Any additional benefit would have to
be established through painstaking experimental research, on
Eskimos. Since, as Jensen (1980, p.314) informs us, the
Matrices correlate only .85 with the Wechsler Bellevue, and
in some instances .B3 with the WAIS, and .27 with the
Stanford Binet, the Eskimos' performance on the .Matrices
would not even enable us to predict their performance on the
other 1Q tests very well, if that ever were of interest.
Therefore, before it makes sense to ask how much we can

boost the IQ of Eskimos, we would first have to explain
which of the four IQs we wish to boost, and then why.
If, on the other hand, we wave the magic wand of

factoranalytic jargon, then such simple facts can be made to
sound guite imposing:

"Factorially the Progressive Matrices apparently measures
g and little else...Many other tests also measure g to a
high degree, but few if any, have so little loadings as the
Raven on any of the main group factors — Verbal, Numerical,
Spatial and Memory...Some of the small spurious factors that
emerge from factor analysis of the inter-—item correlations
are not really ability factors at all but are '‘difficulty
factors', due to varying degrees of restriction of variance
of items on, widely differing difficulty 1levels and to
nonlinear regressions of item difficulties on age and
ability (McDonald, 1965) . When proper account is taken of
these psychometric artifacts, the RPM seems to measure only
a single factor of mental ability, which is best called g.
The raw inter—item correlation matrix on large unselected
samples closely approximates the appearance of a "simplex”,

which means that all the intercorrelations can be
‘explained’ most parsimoneously in terms of a single factor
plus random errors of measurement” (Jensen, 1980, p. 846f).

Most laymen (and not a few psychologists) will stand
aghast at so much technical language. They will walk away
impressed with the high state of the art of intelligence
research it seems to reflect.
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Few readers will notice, for example, that Guttman (1958)
had actually presented "The simplex as a counterexample” (p.
303) to Thurstone's hypothesis “that relatively small rank
could be attained for correlation matrices of mental test
data by use of communalitites” (p. 297). Few will be
familiar with Thomson 's and Mackie's reservations about the
psychological implications of correlation matrices which
actually do have small rank. And few will know that the
*srucial” question of how to decide how many factors there
are in a given set of data is still wide open, despite the
best efforts of a number of professional statisticians,
because they have had only time to answer the wrong half of
the question, so far.

However, as the record shows, there has . been a
longstanding tradition in psychometrics to eliminate all
disquieting discussions of facts and interpretations which
conflict with Thurstone's parsimoneous theories. It is,
therefore, not surprising that most users of factor analysis
are unaware of its limitations.
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APPENDICES:

THOMSON'S SAMPLING THEORY

EXAMPLE OF A SAMPLING PATTERN S (eq. 3.5):

N

POPULATION CORRELATION MATRIX (eq. 3.9)
ASSOCIATED SAMPLE CORRELATION MATRIX (N

1

1.00
716
.765
.616
.283
.369
.133
.519
.548

o bt et e

2
.750

1.00

. 769
.675
.595
491
.313
524
489

6 7 8
11

11 1

1 1

1 1

1

1

1 1

1 1

3
.788
.788

1.
.705
.593
.205 -
.265
432
.501

13 14 15 16 17 18 19 20
1 i1 1 1 1 1
1 1 1 1 1 1 1
I 1 1 1 1 1 1
1 1 1 1
1 1 1 -1

1 1

1 1
1 1 1 1
above diagonal.
« 200) below diagonal.

6 7 8 9
.375 177 .510 .510
.500 .354 .510 .510
.243 .343 495 .495
.333 .000 .408 .680
. 480 .000 .333 .500

1. .000 .612 .408
-.021 1. .000 .000
.663 -.073 1. .500
452 -.027 .570 1.

NUMERICAL EXERCISES WITH ODD ANSWERS

SUMMARY OF MONTE CARLO STUDY FOR VARIOUS VALUES OF m (N = 200):

1

.39
.85
.31
.00

.00

.94
.52
.02
.00

2

J21%
.22

3 4

.00% ,00*%

.08%  22%

< 34%
.46

1

.33
.39
.85
.31
14
.00
.00

.45
.64

.71
&0

s DY

.70

2 3 4 5

.68
.01 082 22+
00 .00 .00* .00%

Entries are probabilities of UMLFA LRT for H :m=m°. *boundary cases

0

. .
PN RS a-b:&nm o

HOWWAWUEWN

e

APPENDIX A2:

1

.174
. 745
.688
.715
546
.846
.612
.654
.544
.631
.529

.826

.720
.660
.580
.376
487
726
.545
.590
.510
.563
.495

.624

COMMUNALITIES:

A2.1 CORRELATIONS (Source:Wechsler, 1974b, Table 9).
150 females, ages 45-54. Aaove diagonal.

REPRODUCED CORRELATIONS MIE I = A A® + Uz under H.: m = 2;below
diagonal.

.580
.510
.540
.570
.480
.630
505
.551
.510
514
.494

<495

FACTOR ANALYSIS ARD REGRESSION COMPONENT ANALYSIS
OF THE WAIS

150 males and

.650
.630
.570
.620
.510
.630
.550
.376
.603

574

.582

624

The MLE is used as a population correlation matrix for the
simulation in Appendix A3.

550
490
.580
500

420

.520

500

.590
.361
.536
.615

.639

score

10

.600
.580
.530
.570
L430
.640
.590
.630
.520
.466
.518

.534

.592
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APPENDIX A2.2: TFACTOR PATTERN, FACTOR STRUCTURE AND REFERENCE VECTOR STRUCTURE APPENDIX A2.3: REGRESSION COMPONENT ANALYSIS OF THE WAIS DATA IN A2.1:
AFTER OBLIQUE (PROMAX) ROTATION TO SIMPLE STRUCTURE: A
RCA (SchBnemann and Steiger, 1976) is a data reduction method patterned after
Guttman's (1952) Multiple Group Method. It closely parallels factor analysis,

except -that the new variables ("regression components") are linear combinations
of the observed variables Yys and hence are determinate. The defining

equations of RCA are (1) n = AfL + €, (41) £ = B'n , A = cov(n,£) var-l(i).
The analysis can either be based on a set of "defining weights" B (which then
determines A), or on a "regression pattern” A (which then determines B). 1In
v P v P v P the present case it is based on A, obtained on rotating the regression pattern
for the first standardized Principal Components obliquely to Simple Structure.

FACTOR STRUCTURE REFERENCE VECTOR
FACTOR PATTERN A: G STRUCTURE

1 Information .841 .088 .907 .723 .551 .057 REGR. PATTERN A DEFTHING VEIGRTS B
2 Comprehension .713 .135 .815 674 467 .089
v P v P
3 Arithmetic .485 . 344 . 745 L7107 .318 .226 )
1 .913 .001 L2111 ~.045
4  Simflarities .638 .188 .780 .670 L6418 .123 —
2 .878 -.027 .204 -.055
5 Digit Span .317 .357 .587 .596 .208 .234 - i
3 .636 .221 136 .063
6 Vocabulary .961 -.035 . 934 .691 .630 -.023 —
o 4,824 013 .190  ~,035
7 Digit Symbol .378 .373 660 .658 .248 L244 —_—
5 .390 L343 073 .127
8 Pict. Completion .272 .564 .698 .770 .178 L370 )
6 .981 -.080 231 -.083
9 Block Design -.090 .865 .564 .797 -.05¢9 .567 —_—
7 .502 .296 101 .101
10  Pict Arrangement 367 L 413 .679 L6590 .240 L2711
8 .365 .520 .059 .204
1l Object Assembly =~072 .822 .549 .768 -.047 .539 —
9 =-.071 921 -.062 .396
10 .478 .348 .093 .125
11 .116 .950 .074 L4611
T .698
vp =

Although the numerical results usually are very similar to those obtained

with the CFM, the theoretical interpretation is quite different: in particular,
there is no claim that such regression components have any scientific status

of their own (as factors are supposed to), because RCA is purely tautological,
not inferential. Any scientific significance of the components would have to
be established through independent experimental work.
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Subj.:
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

-.428
-.842
,483
1.002
.326
-.029
~1.791
.876
-.192
.002
-.235
.367
2,618
.585
.111
-1.011
-1.529
.878
~.089
-1.102

X
-.393
-.176

.523
1.386
-.376
-.204

~-2.348
1.363
~-.506

.084

567
-~.154
1.919

570
-.327
-.821
-.868

1.145
.009

-1.191

A3.1: FIRST SET OF

X

.138
035
647
.168
-.435
1.080
-2.239
1.213
329
673
.132
.081
1.689
476
.258
-2.179
-.666
.365
~1.081
-.685

X*
-.172
121
1.198
671
.250
.398
-2.171
-.163
.343
.059
.379
-.088
.970
1.613
.092
-1.055
-1.470
1.442
-1.154
-1.264

4

~1.202
751
=-.246
1.096
-.674
. 008
-.517
.022
+263
2.138
.993
~-.763
-1.022
-, 244
=566
.035
-.129
-, 1453
2.013
-1.812

EXACT FACTOR SCORES anNv for 20 SUBJECTS WHICH REPRODUCE THE MLE IN Al.2

Z

-.668
-1.051
.228
.846
.154
.776
~1.144
~.154
~1.075
447
~.147
-.791
-.302
.929
-2.356
.291
1.107
.838
.024
2,050

APPENDIX A3:

Z,

-.401
.7158
-1.523
1.857
-1.046
.368
-.213
7114
971
-1.207
~.749
-.159
-.656
2.204
.315
.906
~.246
-.731
~.934
-.228

2

. 144
1.098
.092
1.439
-.727
-1.380
-1.516
~1.787
.517
-.181
1.403
1.079
.649
~1.315
-.065
.503
.331
-.389
-.859
. 964

Zg

1.432
‘tp.mbu
915
1.983
~.680
717
.101
-.637
~.118
-.333
-.173
-1.224
-1.201
~.995
1.526
-.150
~.049
1.192
-.273
-.389

FACTOR INDETERMINACY

Zg

.436
.607
046
-.650
-1.402
-.957
~.619
2,257
~1.649
-1.047

;1,083

.004
-.296
-.409
-.037
1.121

.800
1.452
-.107
~-.633

Zy

.765
1.272
.914
.874
-,232
~.794
1.811
.070
-1.302
.202
1.014
-.927
-.022
L7191
~1.003
-1.103
-1.971
-.238
~.693
.573

Zq

~1.665
.982
.369
-.301
1.299
072
J151
-.314
1.178
-1.593
1.098
~-2.297
.372
-.070
.207
-.330
.633
1.259
-.494
-.357

SCORES (X*,Z%) FOR 20 SUBJECTS WHICH REPRODUCE THE MLE IN Al.2 EXACTLY:

%
~1.207
-.610
-.443
214
1.002
.503
+590
-.669
.894
2.102
~675
.323
.538
-, 453
.353
-.585
-1.292
-.908
1.832
-1.512

Z%
-.638
-1.900
.047
.247
1.116
1.155
-.467
-.435
-.687
.490
-1.204
-.101
739
.679
-1.770
-.212
474
.251
-.081
2,297

3
~-.258

.197
~1.856
1.284
~-.725
.876
.179
1.092
1,206
-.934
-1.503
.336
.277
1.593
744
144
-.315
-1.526
-.969
157

.202
.379
-.118
.885
.002
-.989
-.958
~-1.871
.840
-.078
493
1.673
1.596
~1.648
442
~-.040
-.110
~.996
-.938
1.233

7%
1.560
~1.955
.645
1.594
-.626
1.103
« 297
~.203
.004
~-.084
-.615
-.933
-.585
Mw.uwu
1,782
- 745
.051
.587
-.279
~.086

N*
.311
~1.185
-.008
~1.641
1.106
-.552
.892
.806
~.797
-1.328
~1.060
1.396
1.523
-.256
1.132
717
~1.065
.839
-.378
-.452

.909
.873
.603
406
-.112
-.343
2,071
.534
-1.142
.480
.458
~.561
.727
.202
-.683
~1.796
-1.900
-.944
-.707
.924

28
-1.395
.608
-.156
-.934
1.068
77
.335
+336
1.304
-1.064
+315
-1.909
1.343
~1.110
.554
~1.448
1.080
.150
-.469
.215

Z4

.503
.728
-~ 448
-.758
.370
1.718
0.448
-2.007
-.905
-.395
701
1.398
-.788
1.027
-.352
413
-.912
1.572
~-.247
~1.170

APPENDIX A3.1 (continued): SECOND SET OF ( MINIMALLY CORRELATED) EXACT FACTOR

2§
.955
704

-1.236

-1,424

-. 751
2,674
-.629
046
~-.972
.500
465
1.564
142
-.613
-.178

-1.176
.344
.062

-.127

-.350

EXACTLY:

210

1.868
.007
1.311
~.419
~-.011
-1.284
=990
-, 760
.591
~1.134
-.188
-.410
=.196
1.754
~.589
~.667
1.001
=714
1.600
~-.771

%0
2.037

-.403
.955
~-.930
.060
-.778
=.732
-.189
.752
-.807
-4 768
-,027
614
1.074
=-.253
~1.449
l.132
-1.508
1.592
=.373

11

~.742
-.357
1.835
~.734
462
~1.562
-,661
.122
.826
1.451
~.462
.214
-1.432
1.034
.525
1.179
-.803
.676
-1.541
-.030

N
-.339
-.392
1.130

-1.337
-.522
-.704
-.812
1.947

772
2.250
-.690

.373
-.587
-.431

689
-.245

.307
-.679

-1.435

.705
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APPENDIX 3.4: FACTOR INDETERMINACY INDICES FOR THE WISC-REVISED*:

APPENDIX A 4: 1IN A JIFFY

SOURCE: WECHSLER, 1974c 24 correlation matrices were generated according to the CFM with A = (.11)

drawn from a uniform distribution (over the (0,1) interval) for various

. 2
values of m and p =10. U” was scaled in each case so that the average
i ique) PROMAX solution
{orthogonal) VARIMAX solution (obliq

Age m smallest No. of discrepancies smallest No. of discrepancies population communality was exactly .6. Two samples each were then generated
minimum exceeding minimum exceeding

Tt 172 st. dev for the sample sizes N = 100, 200, 400, 800, and the eigenvalues were
. . correlation . .
correlation 1/2 st. dev computed. There was no systematic sample size effect.

The contingency

11.5 & .15 16/20 .42 14/20 table zives the frequencies of the number of eigenvalues exceeding unity
12.5 3 .56 8/20 55 10/20 (KLJ m) for three values of true (ideal) rank m.
13.5 3 .26 12/20 .71 12/20
4.5 & .08 14/20 ) TRUE m:

3 .49 13/20 KLJ m 2 4 6

2 .54 13/20 1 3 5 11
15.5 4 .28 18/20 -62 9/20 2 x 3 12

3 .59 12/20 .73 11/20 3 1 0 1
16.5 4 .63 /20 8 8 8 24 #: correct decision

3 .28 9/20

2 .59 12/20 <74 7120 APPENDIX AS: POWER AS A FUNCTION OF COMMUNALITY IN UMFA

A5.1: AVERAGE COMMUNALITIES IN 61 STUDIES REVIEWED BY FRENCH (1951)

Note that oblique rotation, in general, improves the definition of the Upper boundary: .35 .40 .45 .50 .55 .60 .65 .70 .75

common factors for the same m(see Sch¥nemann and Wang, 1972, p. 70) as well Class Frequency: 02 04 03 12 19 10 07 02 02

as the definition of Simple Structure (not shown). Extracting more common factors

usually depresses the indeterminacy measures, except when boundary cases arise COMMUNALITIES IMPLIED BY VARIOUS VALUES OF 9 FOR Zk = A

2
Az' + 9 us;
FOR THE GEWEKE AND SINGLETON FACTOR PATTERN A2

2
(the frequency of which increases with mo) and the corresponding factor is

partialled out as a component. The author's reservation about such a mixture

3 1 2 3 4 5 n?
of factor and component analysis are stated in loc. cit., p. 87.

.90 .92 .91 .94 .96 .93 (Geweke and Singleton)
.85 .89 .87 .91 .94 .89

0

5

0 .81 .86 .83 .88 .92 .86
.0 .74 .80 .77 .84 .89 .81

0 .63 .71 .66 .75 .83 .72

0 .55 .63 .58 .68 .78 .65

. .46 .55 .49 .60 .71 .56 (French survey)

*The author is indebted to Mr. Gary Bu for some of these computations.
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jraph shows percent of rejections of HO: m=1 against le

factor pattern A, (eq. 6.3) in Geweke § Singleton study (1980) as a
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Figure 1

m=2 (true) for

function of average communality (see Table A.5). Power is given for 3

alpha levels. Each data point is based on 100 replications, so that

curves are interpolated averages for 200 replications.

Note that power is high only for unrealistically high average communality

{left side of graph), and falls off sharply as average communality ap-

proaches more realistic values. For the average of the French survey

(1951), estimated power exceeds barely the alpha level of the test

(right side of graph).

Edwin Bidwell Wilson was born in 1879 and died in 1964.
“‘Wilson was the last student of J. Willard Gibbs at Yale and
had worked creatively in many fields of mathematics and
physics; his advanced calculus was a standard text for
decades; he wrote oné of the earliest ®=x12 on asrodynamice;
he was a friend of R. A. Fisher and an expert on
mathematical statistics and demography. My early
formulation of the inequality in Eq. 4 owed much to Wilson's
iectures on thermodynamics” [Paul A, Samualson, Nobel
address, reprinted in Science, 1971, 173, 993-994] .

it asked to list the four most important pioneers of factor
analysis, | would name Spearman, Thomson, Wilson and
Guttman. Of the four, only Spearman kept his faith in the
model, the others became more and more disenchanted as
they learned more aboutit. Today, only three are reasonably
weli-known. At the time, Spearman and Thurstone
recognized Wilson’s stature at once: "The development of
factor theory as well as its applications in science, will be
accelerated by the assistance of mathematicians; and it is
gratifying that Professor E. B. Wilson has turned his attention
10 these problems in several papers’” [Thurstone, Vectors of
the Mind, 1935]. This enthusiasm waned quickly when
Wilson pointed out severai flaws which had escaped notice of
the factorists of the preceding decades.

Only a dozen of Wilson's more than 200 papers deal with
factor analysis. In those few, he raised all the major problems
which stili face us Yoday. Until | rediscovered Wilson in the
stacks of the Ohio State Library in the late 60's, his name
had virtual!ly disappeared from all standard texts on factor
snalysis. Wilson was never given the recognition he deserved
by the Psychometric community, which, perhaps, is only
logicat. — P. H. S.

SCIENTIFIC BOOKS

The Abilities of Man, their Nature and Measurement.
By C. Srraryax. New York, The Maemillan Co.,
1927, vi+ 415 + xxxii pp.

Tie Grote professor of philosophy of mind at the
University of Londoa has written an important book.
It could not be otherwise when the book represents
the cumulation of intellectual endeavor for a period
of a guarter century by sueh as he. It may well be
t:at be does not know exactly what his theories and
facts signify; it is certain that I do not. The work
bas been supported during its progress by the eollabo-
ration of a multitude of Spearman’s pupils and by
others, it has drawn widely upon the investigations of
other schools, it has also had eonstant opposition and
the book has been severely criticized in a review in
Nature (August 6, 1927, p. 180) which has led to an
interchange of views between author and reviewer
(Nature, November 12, 1927, p. 690). Into this dif-
ference I will not enter except to say that whether
the book is mathematically complete or not does not
interest me; this is unimportant. Scicnce advances
rot so much by the completeness or elegance of its
mathematics as by the significance of its facts. You
€an not upset the findings of the “Origin of Specics”
cither by the eontraposition of your religious con-
victions or by observing that Darwin’s statistical tech-
nique was not up to standard. Secience goes forward

Reprinted by permission from: Science, 1928, LX VI, 244-248,

upon ‘“evidence beyond reasonable doubt”; to that
evidence incomplete mathematics may contribute valu-
able elements.

Spearman’s chief thesis is that when a group of
persons x, ¥, z, . . . are given a test e, say of arith-
metic or spelling or literary interpretation, the marks
g, My, M,,, . .. which they score represent in part
their respective general intelligences g,, g,, gy - . -
and in part their special abilities in the subject, s,
Says Sag - - - This would seem incontrovertible pro-
vided we mean by ability in the subject, ability to
get scores in the test. The necessity for this proviso
may be illustrated as follows. I have some general
intelligence; I have some mathematical ability; yet if
an examiner should set me a mathematieal test in
Yiddish, which might be “easy meat” for a lot of
eandidates for admission to our colleges, I should
miserably fail. It may further be remarked that the
SCOres Digy, M,y . . . may depend on the manner of
scoring used by the examiner or his clerk. For ex-
ample, if the test be of the simple sort where a large
number of questions are answered yes or no, one
method of scoring is to count the number of right
answers, Ry, R,, ... .; another method is to take the
disference between the numbers right and wrong
(R-W),, (R-W),, . ... If all the N questions are
answered, the scores are equivalent since W=N-R
and the serics of scores Ry, Ry, . . . and 2R.-N,
2R, - N, ... are in the same order, will give the same
correlations with other tests, ete. But if some of the
questions are unanswered (U), the second series be-
comes 2R, - U, ~N, 2R, - U,~N, ... which nced not
be equivalent to Ry, Ry, . ... IIow are we to com-
pare the answers of two persons to 50 questions if
one answers 40 all correctly and the other answers
all 50 with 45 right and 5 wrong?

The next thesis is that when a battery of tests
a, b, . .. are sufficiently different, so that the scores
may be assumed to have in common only the general
intelligence we may write for the nk marks of then
individual x, 5, z, ... on the k tests a, b, . . .

My = CoZx +8'22

M= C,8x+ 8 e
My, = CoZe + 8%y (1

My = Cafy + 80y

in such a manner that the general intelligence g and
the special abilities 5", are uncorreiated, i.e.,

2g.8w=0,... (9
38 ex=0, ... (3)

ngl'u = o,
288 =0,

when the summation runs over the individuals x, y, 5,
.+.. This leads to some correlation algebra to
prove both that such a resolution of the marks is
possible and that it is unique. I have read the proofs
with care (including the references to the literature,
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20t all of which hes been reproduced in the book) and
bave found no errors in the mathematies. Yet I am
uot entirely happy, satisfied. I should like to have
found at least one example worked out in detail—
one set of nk scores for n individuals on k tests
worked through to the determination of the n values
€ By - . - of the general intelligences of those in-
dividuals and of the nk values s’y s’y - -

,

-3 s’bxy
84y« - o3+ . . of their special sbilities on each of
the tests. Theorems which prove the existence of
some possibility do not satisfy the practical applied
mathematician—we do not so much want to know that
there is a solution to the problem as to know what
the solution is! I will work an example below.
What solution does the author offer us? (First
ke adopts scales which reduce the scores on each test
%0 that they have the same dispersion about their
means, we may take it as unity, which is also the
dispersion of g.) If r,g be the correlation coefficient
between g and the test a, he shows that the solution is

8x = ToglMlax

with a probable error of .6745 (1-r',)%. Note that
the answer is a regression equation. We do not know
the individual values g,, gy, . . .; Wwe could write

BT TagMax + €4y
€y = Taglyy + €4y

where €'+ €y + ... =n(1 - r’u), If the author desires
to prove that testing does not determine the general
intelligence of the persons tested he bas succeeded.
Why did he pick on test a to determine gt Evidently
one could equally well write

€x= Toguy, ete.

with a probable error .6745 (1~1'y)%, ete. Prac-
tically we might choose that test as a which has the
bighest correlation with g. Better, he shows how to
weight the different tests so as to get & combined
score ¢ which best determines g. In the example this
best score gives r,;=.75 so that the probable error
in g, is .6745 x .6614 =.446. When we recall that the
xale of g is such that the standard deviation of g is
unity or that one half of the n values of g lie between
~.67 and + .67, two thirds of them between - 1.0 and
+1.0, we can appreciate the significance of a probable
aror of .45. The solution for the special ability is
Lkewise
B = (1-17,) ¥m,

with the probable error .6745r,,. The better the test
s estimates g the worse it estimates the special ability.
Spearman’s eomment is: “We are faced by the fact

that the current measurements of specific abilities—
upon which have come to hang the weal or woe of
countless individuals in industry and otberwise—are
little more than the blind leading the blind.” Rather
pessimistic I call it, possibly unjustifiably so in view
of such success as persons like O’Connor (West Lynn
Works, General Electric Company) bave in their
placement work.

Spearman gives a long discussion of the attempts
that bave been made to define general intelligence.
He does not define it, he computes it, and at that only
by a regression equation, he does not measure it any
more than he would weigh & person by computing his
weight from his height through a regression equation
of weight on height. He sets forth a hypothesis that
the general intelligence is energy, the special abilities
are engines, with apparently the will as engineer.
This is allegory. If intelligence were energy it should
be measured in ergs—but again he calls it a force
(p. 414), so perhaps he thinks of measuring it in
dynes. Or perchance the whole is mere logomachy.
It would be interesting to enquire which of the tech-
nical physical terms is most like g, the general intel-
ligence. Perhaps it might be efficiency! It would
also be interesting to know just what he or Maxwell
Garnett (a competent applied mathematician) means
by the word unique in the proof that the resolution
into g’s and §’s is unique. He can hardly mean that
the regression equation g,:0,=r,.m,;:0, is unique
sinee there is one such for each test and they give
different results. If he means that given the nk
grades m,,, My, - » ., M,y . . . We can determine the
actual values of g,, gy, . . ., Why are we given the
regression ?

Exzample (preamble). If we ean assign the k quan-
tities ¢, €y, . . - and the n values g,, gy, . . - €qua-
tions (1) will determine the nk special abilities 8" from
the nk grades m. Equations (2) if the n values
€ &y - - - are known will determine the k values
Ca Cby « - - BS €, =0,T,. /0. To have the intelligence
g on a uniform scale we shall assume o,=1 which
gives one quadratic equation between the n values

gl) g’l A
ghtEL tEht. . HEW= %)

We must find the k coefficients T, Equations (3)

when expressed in terms of the m's and g’s give the
equations

TugTug = Tany

and if there be three or more tests ensble us to solve :

for r,,, etc., as

Tag = _J[_‘L;_L‘_Teu. A8

Toe

Tagleg = Tae ‘ (')

This requires that the values r,, should be fractional
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The radical is positive only if g, lies between -.14

or (if all the correlations Ty, T, Tpe, - . - between
tests be positive, as is usually the case) that

Tuoe S Taplac €)

or that the partial coefficients 1y, , shall all be positive,
and, if there are more than three tests, that the so-
called tetrad relations vanish, ie.,

TacToa = Taalec = O, (7)

These relations (6) and (7) are verified within the
experimental error with respeet to a large variety of
intelligence tests. There is the equation

ExtBr+Er - +8=0 (8)

introduced to simplify the analysis and refer all g's
to their mean. If the m’s are also thus expressed, as
is most convenient, the s’s will be relative to their
means. The k equations (5) are Linear in the g's, viz.,

MixZrt. o o+ M@y =0 1,0, &)

We have, therefore, in (5°), (8) and (4) the number
k+1 of linear equations and ome quadratic equation
in the n quantities g. It would seem as though the n
values g could be found with n-k~2 degrees of free-
dom, ie., that, as n is generally much larger than
k + 2, the solution should be indeterminate rather than
unique,

Ezample (solution). Try a case. Let the marks
of 6 students on 3 tests be (the first columns give the
actual marks, the second columns give the differences
from the means)

a b [
1 10 1] 8 3 1 2
2 8 3 5 (] 9 4
3 6 1 9 4 4 =1
4 4 -1 7 2 8 3
5 2 -3 0 -5 1 -4
6 ¢ -5 1 -4 1 -4
6a* 70 70 62

Toe .66, r,.=.73 1, =.74

The equations to be solved are

5g:+3g,+ gy~ g, - 3g,~ 5g,=18.5
3g +0g,+4g,+ 2g, - 5g, - 4g, = 16.7
281‘1’4&‘51“‘38.‘45.'4&:16.3
S +E Rt gt gt ge=0

EiH gLt gh g gt g6

:I'bc result of solving the first four for 81 B2 E5s Be
18 terms of g, and g, and substituting in the last is

8 =49 -.7g, = .89, V (- g’ +.40g, + .069)

and +.52 and any value of g, between these limits is

possible. For the two limits the solutions for the
g’s are
dift.
&= 9 g:= 143 -3
g:= 121 gz 42 +.8
W= 59 &= J2 +.5
go=- 14 &= 52 -7
gi=~147 &B=—- .80 -.7
g=-110 g=-169 +.6

Notice that the ranges of possible intelligence for the
six are different; we have a better line on 1 and 8
than on 6 and know least sbout 2,

Let us next compute the special abilities so stand-
srdized that their standard deviations are unity. The
equations given by Spearman sre like

May /0, =T+ V1P 8,
m,;/3.4=.905 g, + 428,
8u=.7m,~21g,

On the basis of the extreme alternative solutions given
above we have

aiff.
Su= 4 +1.2
8, 1.2 ~-1.6
8,= 5 ~-1.0
8,4==-1.8 +14
=~ 4 +1.4
8=+ .1 -13

Similarly we could compute for tests b and ¢ the
limits of specific ability. (The calculations given
above have been carried to so few places that a pos-
tive check ean not be expected, either for the zer
mean or the unit standard deviation.) What we have
shown is that the complete solution can be obtained
but is indeterminate. We have had no need of any
barder mathematics than the solution of & set of k+1
linear equations and 1 quadratic equation, We do
not need the gencralized Bravais distribution (as used
by Garpett) and in view of Yule’s wise comments oz
mental measurements (Brit. J. Psych., vol. 12, p. 100}
to all of which I hereby subscribe, it would seem
quite superfluous to introduce this higher mathemat-
ics, involving a probability theory which probably
does not apply anybow, to make determinate (if it
does) that which without it scems indeterminate,

Do gs, gr, . . . whether determined or undetermin
able represent the intelligenee of x, y,...? The
author advances a denl of argument and of statistias
to show that they do. This is for psychologists, not
for me, to assess. I believe he does not adequately
emphasize the fact that they represent the inmtelli
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gence only relative to the set-up of the tests. That
this is 5o is evident from general considerations of the
transformation theory of correlation algebra; but as
even the term “transformation theory of correlation
slgebra” seemed unknown and unintelligible to a
large group of persons professionally interested in
statistics and in education when I recently mentioned
it to them, I take the space, in a review already too
long, to expound the obvious. 1°, If we have nk
marks of n individvals x, y, z, .. . on k tests ab,e
... we may combine these marks into new sets of
scores, call them @, b%, ¢/, . . . , in & linear fashion as

Way = € May 4 Culye + o .
My =€y Wy + CyyMpy + . .

Mpa =€y Myg + CMyy + 4,
W/ ey = €y M,y + CuMpy + . . .

with k? constants ;. These new scores m’ contain
all the information of the old scores because they can
be solved for the old scores m, but the information
is differently assembled. It may be that these scores
do not measure any particular ability such as spelling
or literary interpretation or mathematical Jjudgment,
bat they do represent scores involving certain weighted
eombinations of such abilities and with my limited
bowledge of intelligence testing seem to represent
wme sorts of ability. 2°, Irrespective of whether the

irad relations (7) are fulflled, we can choose the
eonstants ¢, in infinitely many ways so that the new
wores are all uncorrelated, ie., r,=1,.=1. =
«..=0. In this case the tetrad equations for the
new correlation coefficients must vanish. Now if
8y By - - - be the general intelligence of the persons
tested the equations (3’) ean no longer be solved as
iv (5) for r'y;, 7", . . . because (5) become inde-
terminate ; but inspection of the equations

Vg g =Ty =0

g Veg=Tae =0

thows that all of the correlations of g to the mew
wores must vanish except at most one. Which one?
As the equations defining a’, V', ¢/, . . . are largely
wbitrary, the symmetrical and natural conclusion
would be that none of them sre correlated with g
0r we might so form one of them say &’ as to agree
fhat it represents the intelligence g with r'e=1 and
the others represent special abilities independent of g.
Next, 3°, to be more specific we may take as one
simple definition of a’, b’, ¢’, . . .

m' ey =My,
My = My = GuTallys /G0
m’ey = Mey + By + am,

and determine B, ¢, so that ’,,=0, r’,. = 0, and so on.
Now as we know r,, by (5) as other than 0, it follows
that r'sc=ru == 0 and that the remaining valnes T'hs,
e, . . . 8ll vanish, But from the definition of 3’

0=c"s =0 (Toy— TouTag)
or Tog = TarTeg =0

This last equation is, however, impossible sinee we
know that r.ry, =r,, Hence, 4°, any set of values
Ex) &y + - - for the general intelligence of x, ¥, . . .
which will go with the set-up of tests a, b, ¢, . . . can
not possibly go with the set-up &', b’, ¢/, ... but
must be replaced by new values g%y, g’y, . - . approxi-
mate to that set-up. Yet the information we kad in
the nk scores of x, y,...o0na, b, ... is all eon-
tained in the nk scores assigned to 1,7, ... on o,
b, .. .; the persons x,y, . . . are the same but their
intelligences bave changed—the old values whether
indeterminate or unique will no longer do. What
does this leave of the concept of the intelligenee of
an individval x as measured by g,1 Apparently only
that it is relative to the set-up, which is the obvious
proposition that I set out to prove.

The intelligence tester may object that the seores
on a’, b’ . .. mean nothing, sre mere artificislities,
whereas those on @, b, . . . are real things and mean
something. I would not deny the objection. Although
bypothetieal unrealities may illuminate the significance

of realities, it is the realities that make science. All'

I was trying to do was to supplement Spearman’s dis-
cussion of the universality of g with a little contribu-
tion on the relativity of g—as might be expected of
an erstwhile physicist! It seems to be an undenisble
statistical fact that batteries of intelligence tests as
given and as scored tend to be what has been termed
hierarchical in that they tend to satisfy the tetrad
relations (7). This fact means something, it needs
to be explained, Spearman has offered an explanstion.
Possibly the explanation should have laid more em-
phasis on the tests and less on the general intelligeace
~1I do not know—but in Spearman’s system we bave
a method of examining our data, of discussing its
implications, of organizing it into a philosopkical
system, just as we have in Einstein’s, 2nd at least for
the immediate future the system propounded in “The
Abilities of Man” can not be ignored by those work-
ing in its field. That is why I said that the Grote pro-
fessor of philosophy of mind at the University of Lon-
don bas written an important book. Moreover, it is
clearly, spiritedly. snggestively, in places even provoe-
atively, written; intelligible and entertaining even to
the general reader. The mathematics has been put out
of the way in a highly compressed appendix. I bave

cbosen to teke the risk of misrepresenting the char-
acter of the book by writing & very lop-sided review
with its emphasis chiefly on the appendix because I
know that this has offered difficulties to some very
intelligent readers, because it appears logically funda-
mental to the whole system, and because some of its
important logical implications seem not to bave been
expressed by the author in the main text.
EpwiN B. WisoN
HARVARD ScHOOL or PuBLic HEALTH
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