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Some Theory and Results for
Metrics for Bounded Response Scales

PETER H. SCHONEMANN

Purdue University

In an carlier note, a new metric for bounded response scales (MBR) was introduced which
resembles the city-block metric but is bounded above. It was suggested the MBR may be more
appropriate than minkowski metrics for data obtained with bounded response scales. In this
article, some formal properties of the MBR are investigated and it is shown that it is indeed a
metric. Empirical predictions are then derived from the MBR and contrasted with those of a
“monotonicity hypothesis,” which holds that dissimilarity judgements tend to be biased
towards overestimation of larger distances, and with the predictions of the minkowski metrics,
which imply additivity of collinear segments. Some empirical results are presented which
contradict the monotonicity hypothesis and the minkowski metrics, and favor the MBR.
Finally, the logic used to motivate the MBR is invoked to define a subadditive concatenation
for bounded norms in the one-dimensional case, which may be useful in psychophysical work
where the upper bounds are often real, rather than due to the response scale. This
concatenation predicts underestimation for doubling and overestimation for halving and
middling 1asks.

1. INTRODUCTION

Most modern theories of psychological measurement are predicated on the
iArchimedean axiom which characterizes the natural numbers N: for all nonzero D
gE N, with p <gq, there exists a number n € N such that np > gq. As Helmholtz
;(1887) already observed, this axiom is at the root of the connection between Ziihlen
2und Messen (counting and measuring, the title of his paper). By “Messen” he meant
ithe extensive measurement of physics. Thus if a, b are two physical quantities for
which a concatenation operation * is defined, then the Archimedean axiom says that
{zho matter how small a may be, and no matter how large b is, n-fold concatenation of
ta with itself will eventually exceed b. If g is sufficiently small, it therefore can be used
(0 measure any b > a by expressing b numerically relative to a.

An obvious consequence of the Archimedean axiom is that for unrestricted
concatenation it rules out maximal elements, This condition seemed to be met in
;classical, Newtonian physics. However, when Michelson and Morely showed towards:
ithe end of the last century that it is not met for velocity, the previously used additive
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concatenation for velocity had to be replaced with a non-additive concatenation,

which is formally equivalent to the addition rule for hyperbolic tan'gents.
Notwithstanding its central role in axiomatic measurement theorl.es, “probably the

most vexing of the axioms is the Archimedean one which, as was pointed out, may be

trivially true or may be difficult to test” (Krantz, Luce, Syppes, & Tversky 1971, p.

130). Similarly, Luce and Marley (1969) feel that a “limitation of the traditional

theory is its failure, even when there is no restriction on concatenation, to take into
account the possibility that the system may have a maximal elemel'n. The best known
example is velocity: according to the theory of relativit)", no velocity may exceed the
speed of light” (p. 236). Krantz et al. (1971) treat this well-known ejxample.as an
instance of “non-additive representations” in a section entitled “Essential Maxima in
Extensive Structures,” which follows closely Luce and Marley (1969). -Both
treatments are purely formal and restrict the interpretation to physic_s..One point of
the present paper is to draw attention to the fact that non-additive structures
conflicting with the Archimedean axiom may also arise in psychology. . '

The Archimedean axiom has also found its way into multidimensional scal.mg
(MDS). For example, all minkowski metrics are predicated on it. The preoccupathn
with this particular family of metrics began perhaps with Attneave (1950), who, in
this groundbreaking paper, introduced many of the assumptions and rc‘scz\rcl\ themes
which guided MDS to its present stage of popularity. Among other things, ‘Auneave
wanted to test the “Householder-Landahi” hypothesis that the simple city-block
metric, which, in the planar case, can be written

dc=a +b, (ll)

described dissimilarity judgments of physical shapes, e.g., parallc.lograms which
varied in width and tilt, better than the more familiar Euclidean metric
d.=(a* +b1)"?, (1.2)
where in both cases a, b denote the lengths of the orthogonal projections of tbe line
segment between two stimuli 4, B onto two orthogonal coordinate axes, a:s m Fig. la.
Since d, makes less unreasonable requirements on the judgmental‘ cz‘apabxhtles gf the
subjects than d,, the gist of the Householder—Landahl hypotlleS{s is that d_ is (h:
more plausible metric for dissimilarity judgments when the stimuli are “an.alyzable,
i.e., when the underlying subjective dimensions are evident upon inspection .Of t.hc
stimuli. In the above example, these underlying dimensions are presumably subjective
width and subjective tilt. _
Since Attneave found that the observed data were not additive along single
dimensions, he transformed them by subtracting a positive constant estimated on the
basis of one-dimensional comparisons. Thus he was perhaps the first investigato.r to
invoke a monotone transformation to convert observed dissimilarity judgments inlo
“distances™:
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FiG. 1. Notation used for defining metrics and discriminant function S=a+b—c. (a) Notation
used for defining minkowski metrics and MBR, (b) notation used for defining function / to discriminate
between monotonicity hypothesis and MBR hypothesis.

If these quantitities are to be considered “distances” in any meaningful sense, they should be
additive along any single continuum ... large but strikingly consistent discrepancies suggest
that, if we moved our origin up by about 3.4 units, we might obtain quantities which would

display, at least over a considerable range, the properties of distance. (Attneave, 1950, p. 524,
my emphasis).

It might be noted in passing, that, strictly speaking, his observed data already were
distances before the transformation, otherwise he could not have obtained distances
by subtracting a positive constant (I am grateful to one of the reviewers for drawing
my attention to this point). Thus the real motivation for invoking the monotone
transformation was not, as he wrote, to convert his data into distances, but rather to
convert them into distances which are segmentally additive. What is more important,
however, is that Attneave gave no psychological reasons why his subjects consistently
underestimated the “true” distances. From reading the article, it appears he simply
transformed his data because they violated additivity of collinear line segments.

Subsequently, such “additive constant” transformations were often invoked to
correct violations of the triangle inequality. Torgerson (1951; 1958, p. 208) analyzed
“comparative distances” ;= d; + ¢ which he had derived from proportions obtained
with the method of triads. He found he had to add ¢ = 3.60 before his data approx-
imately satisfied the triangle inequality.

For directly observed dissimilarity judgements, symmetry and nonnegativity are
usually tautologically satisfied per instruction. Hence the only possible counterin-
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dication to the hypothesis that the observed dissimilarity judgments are dismnccs' are
consistent violations of the triangle inequality. If the violations were essentially
random, they could be ignored as error. Hence, to use an additive .con'smnf tra.nsfor’
mation to correct for consistent violations of the triangle inequality lmpth, in the
absence of any other justification, a psychological monotonicity hypothesis which, as
far as 1 know, has never been subjected to systematic empirical tests: .

Monotonicity hypothesis. Dissimilarity judgments tend to be biased t0}var(!s
overestimation of larger distances, so that a positive monotone transformation is
needed to restore the triangle inequality. N . _

A second point of this paper, then, is to adduce some empirical evidence that this
monotonicity hypothesis is often false, at least if bounded response scal'cs arc used,
and that in those cases the, monotonicity hypotheses can be rc;?laccd with an al_tcr-
native hypothesis which invokes a known monotone transformation on psycholggwal
grounds. This alternative hypothesis predicts, to the contrary,‘ that the tnangle
inequality is met even for collinear comparisons because larger distances are consis-
tently underestimated, which is what Attneave found.

Upon further analysis, Attneave concluded that the l’louscholdcr—!.andahl
hypotheses was borne out by his data: “Where mctr.ic trf:zltnmnt was possibie, the
composite or crossdimensional ’distances’ between stimuli were fol{nd to be much
greater than would be expected in a Euclidean space, but were approxnmatcly cqual to
the sum of the ‘distances’ along the basic dimensions psychologlcal-rcfcrcncc. systems,
as the second hypothesis above would demand. These results unequivocally lm.ply the
existence of unique psychological reference-systems underlying the perceptions of
similarity and differences among stimuli” (p. 555). As is \Ycll known, these carly
beginnings later grew into “non-metric” MDS, where the dc.sucd‘monotonc transfor-
mation for carrying dissimilarities into distances is obtained iteratively on a computer
(e.g., Kruskal, 1964), and where the Householder—Landahl hypothesis has been
broadened to include all minkowski metrics,

d,=(a" -+ b))V, (1.3)
for all exponents r > 1. For r =2, one obtains the Euclidean metric, for r =1, t'he
city-block metric, and as r approaches infinity, one obtains the so-ca.lled sup-mctrlf:.
In the I-dimensional case, all minkowski metrics coincide with the c1ty:block metric
which predicts segmental additivity along all lines parallel to the‘ coordfnatc axes.
On the basis of a loss function (“stress”), the user was to decide which particular
minkowski metric was appropriate for this data. This once widcly. populzfr research
strategy is vulnerable to various criticisms. Criticisms of more philosophical nature
can be found in Beals, Krantz, and Tversky (1968, p. 141). They argue that every
metric in the last analysis implies a psychological model of some sort so_that
computational convenience alone should not be the ultimate criterion for sFIectlng a
metric. Technical criticisms were presented by Wolfrum (1976). She found, by
theoretical analysis alone, that the “stress”-function is virtually flat for a la.rg.e class
of planar configurations, which makes it an unreliable tool for determining the
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minkowski cxponent. Here we mention one other, seemingly obvious point whick
appears to have been widely overlooked: once one embarks on the quest for the
psychologically correct metric, then there is no obvious reason to limit it to the
minkowski metrics. This family of metrics, though “large,” constitutes only a
vanishing fraction of all conceivable metrics, i.e., of real value ‘functions on pairs
which satisfy the three distance axioms. Moreover,Ya priori there is nothing
psychologically obvious about most minkowski metrics, with the possible exception
of the city-block metric considered by Attneave. '

A third point of this paper is, therefore, that most minkowski metrics make little
sense psychologically, and that they can often be replaced with an alternative metric
which does make some psychological sense and which approximates the minkowski
metrics very closely in a sense yet to be specified.

2. METRICS FOR BOUNDED RESPONSE SCALES

Even the city-block metric becomes suspect as a model for dissimilarity judgments
when the rating scales used to obtain the numerical assignments are bounded above.
For example, if we ask subjects to “please indicate the dissimilarity between the
stimulus pairs on a scale from 0 (identical) to 9 (maximally different),” then we
enforce an upper bound on the responses (viz. 9) which conflicts with all minkowski
metrics because it violates the Archimedean axiom on which they rest.

In Schénemann (1982) the hypothesis was advanced that a more plausible metric

for such bounded dissimilarity data is given by the following metric for bounded
response scales (MBR)

d, = (a+b)/(1 + ab), 0<a, b« I, (2.1)
where it will be assumed from now on that the data have been rescaled by division
with the largest observed dissimilarity rating (plus a small constant to ensure all
resulting relative distances fall into the half-open interval [0, 1)). This metric retains
the simplicity of the city-block metric but respects the upper bound, 1. Thus the MBR
is an adaptation of the well-known addition formula for hyperbolic tangents used in
spacial relativity theory to take into account the empirical fact that no composite
velocity can exceed the speed of light.

The psychological content of the MBR (2.1) is that the subject has to shorten the
segments a, b that the stimulus interval ¢ projects onto the subjective continua (see
Fig. 1a) if he wants to produce city-block-like responses which fit into the response
scale imposed by the experimenter, and that this distortion affects the larger segments
more than the shorter segments. We thus have a second hypothesis which conflicts
with the monotonicity hypothesis stated above:

MBR /liypothesis. Dissimilarity judgments obtained with bounded response scales
tend to be consistently biased towards underestimation of the larger distances. Hence
no monotone transformation is required to restore the triangle inequality. However, if
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the subjects employ a city-block-like composition rule, then a known monotone
transformation of the observed data may restore additivity.

No claim is made that subjects employ the above map Jiterally at all times when
confronted with bounded response scales. Rather, it is held that subjects will have to
employ some contraction if they want to produce city-block-like numerical responses,
and that in this case the hyperbolic tangent addition must be a better approximation
to their judgments on purely logical grounds than any additive distance model.

Another simple concatenation which achieves such a contraction is a + b —ab. It

is not difficult to verify that

a+b—abgd,<d, (2.2)
and that d,, never exceeds this lower bound by more than 0.05, so that this function
might also be considered as a candidate to replace the city-block metric in the
presence of upper bounds. However, there are some theoretical reasons which indicate
that the MBR may be the most promising altefnative among the simpler functions
which respect the upper bound. In particular, the definition (2.1) implies that the
MBR is intermediate between the two bounding metrics of the minkowski family, the
city-block metric d, and theisup-metric d; = max|a, b},

\

dsﬁmax{a,b,}édm=(a+b)/(l +abyga+b=d,. 2.3)

The MBR (2.1) approximates d, for distances close to zero, d, for distances close 1o
the upper bound 1, and the Euclidean distance d, in the middle range. Thus 4,
presents itselfl as an intuitively plausible explanation for why the otherwise
psychologically unmotivated minkowski metrics usually give a reasonable fit for
dissimilarity data. We therefore proceed with a more detailed analysis of the MBR
and derive some empirical predictions which can be tested with dissimilarity data.
For notational convenience, most of the discussion will be limited to the planar case,
which is the most important case in practice. However, a closely related subadditive
concatenation for norms can be obtained by applying the same logic to one
dimension. This concatenation may be useful in psychophysics, where the upper
bounds are often real.

3. SOME FORMAL PROPERTIES OF THE MBR

As a first step, the three distance axioms will be checked.

Monotonicity. The MBR (2.1) is monotone increasing in both arguments
separately.

To see this, suppose a’ > a. Then a’(1 — b +aa'b+b>a(l — b*) + aa'b + b, or
equivalently, a’ + b +aa’b + ab*>a+ b +aa'b + a'b’. Both sides can be factored
to give (a’ +b)(1+ab)>(a+b)1+ a’b). Thus a'2>a=(a'+ b)/( +a'b)2
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Triangle inequality.

The MBR (2.1) satisfi i i i o wi
shown in 2 steps. (2.1) satisfies the triangle inequality. This will be

S'tep 1. Consider the particular point configuration in Fig. 2a, where the 3
vertices 4, B, C project orthogonally in the order (4, B, C) onto the ,lwo coordinat
axes. L.et the projection of the sides |4, B, {B, C], |4, C] onto the abscissa be a or
;:‘spec}ll;elyr, and the corresponding projections onto the ordinate by b, g, s, as in’zl;’i;
D T e B Gl e
" : ‘ s) = (r+s)/(1 + rs) s0 that the triangle inequality is met in
| is particular case. This argument remains valid for all fixed 4, C and variable B as
dor;‘g as a+p =r and b + g =y, i.e., geometrically, as long as B stays in the rectangle
efined t?y 'thc line segment |4, C} as its diagonal with sides parallel to the coordinate
axes. This includes the boundary cases where B coincides with one of the sides of thi
rectangles, as in Fig. 2b where ¢ =0 and b =s. i

Step 2. Leaving A, C fixed, consider now a configuration where B falls outside
the rectangle d'escribed in Step 1, so that the order of the projections of the 3 point
ont9 th.e coordinate axes is permuted, e.g., the configuration in Fig. 2c Denotirll) ths
projections of A, B, C onto the two coordinate axes as in Step 1, and t.hose of Ag B’e

c 8
" c
B
s b
b
A A
a
p a
p
a r b r
B
q
-
c
b
S
A
a 3
c T
FiG. 2. Notation used in proof of the triangle inequality.
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C, where B’ is the orthogonal projection of B onto the side of the rectangle through
C,bya’,p',r',and b’, q', s' one hasa=a',p=p' . r=r'ie, the projections onto
the abscissa are the same for the triangles 4, B, C and A4, B, C, while for those onto
the ordinate one has b > b’ (=s), ¢ > ¢q' (=0), s =s'. Hence, by monotonicity,

(@+b)/(1 +ab)+ (p+@)/(1 +pg) > (a+b")/(1 +ab’)+(p+ q')/(1 +pq’)

and, by Step I,
(@+b")/(1+ab’ )+ (p+q)/(1+pg") 2 (r+5)/(1+7s)

so that the triangle inequality also holds for the configuration in Fig. 2c. Since the
MBR is monotone in both arguments separately, the same reasoning can be repeated
if B has to be moved both vertically and horizontally to obtain a B’ on the boundary
of the rectangle. Hence the triangle inequality is satisfied in the general case.

The present argument supercedes that given in Schonemann (1982), which is
incomplete. The observation that the first step covers the worst possible case, and
thus the gist of Step 2, is due to Professor H. Rubin, Department of Statistics, Purdue
University.

Nonnegativity and symmetry of the MBR
Whence the desired result:

(2.1) are evident upon inspection.

The MBR (2.1) is a metric.

We now turn to the relation between the MBR and the minkowksi metrics.
Inspection of the definition (2.1) shows that the MBR is close to d, whenever the
product ab is close to zero. Thus there is a strong though not perfect monotone
relation between the city-block metric and the MBR over the range 0<d. < 1. As
one of the two arguments, say a, approaches the upper bound 1, the MBR approaches
(1 + b)/(1 + b) =1, and short of this bound it approaches a = max{a, b} if a > b, ie,
it behaves like the sup-metric for larger distances near 1. In view of the inequality
(2.4), it must approach the intermediate minkowski metrics for intermediate
distances, including the Euclidean distance. This behavior of the MBR is graphically
illustrated in Fig. 3, where the “MBR-circles”

d, =k, 0k« 3.1
are sketched for various radii k. As can be seen, these “circles” resemble the unit disk
for d, for small k, that of d for large k, and they resemble Euclidean circles for raddi
in the vicinity of 0.8. Thus, if the subjects were indeed attempting to produce city-
block-like numerical assignments to the stimulus pairs in tasks with bounded
response scales, which force them to employ the MBR instead, then the city-block
metric should give a reasonable approximation because the percentage of smaller

distances usually exceeds that of larger distances in a paired comparison task.
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H . ' .
owever, since the larger distances are underestimated, originally straight lines will

appear curved, as they often do (see, e.g., Krant V i
ntaer, 1983, Pro. o) ( g.. Krantz & Tversky, 1975, Fig. 4; Borg &

In terms of hyperbolic tangents the MBR can be written

d,,=(a+b)/(l +ab) .

= |tanh() + tanh(v)}/[1 + tanh(x) tanh(v)],
= tanh(u + v),

(3.2)

w = -t =tz - i

adhdeir:.a 1: tz}nh .(a), v-'-tanh '(b) are hyperbolic angles. Since they are additive,
| tivity o collmfear lmg segments can be restored simply by transforming the

relative distances with the inverse hyperbolic tangent transformation

tanh~'(d,,) = u + v. (3.3)

If tll1e .MBR hypo(he'sis is valid (which, of course, it need not be), then a subsequent
ia:; ysijs bwml] tl};e city-block metric should give a good fit and remove artefacts
uced by the bounded response scales i i
maneec oy ! p » such as unexpected curvature or logarithmic
?.revxewer' wondered about the relation between the MBR and the city-block
metric: how different will d_ and d,, be in practice? To answer this question, we ma
proceed as follows: , ’

The definition of d,, d,, (Eqs (1.1) and (2.1)) imply that their ratio

r=djdy=14ab, 0<ab<]l, (3.4)
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is maximized under the constraint that d, = const. when a = = d_/2, since a squarc
has largest area for rectangles of fixed circumference. Note that d, varies between 0
and 2 as a, b, and hence d,, vary between 0 and 1. Hence

max r = 1 +d’/4, 0 < d,=const. < 2, (3.5)
which, in turn, implies that the largest difference between both metrics is
max{d, —d,} =d.—d [r=d}[(4 +d}). (3.6)

Thus, the largest difference is 1 at the upper end of the d, scale, and it is 0.2 when
d.= 1. At the 80% point of the d-scale (d.= 1.6) the maximal difference between
both metrics is 0.62.

4. SoME EmpIRICAL EVIDENCE SUPPORTING
THE MBR HYPOTHESIS

An empirical study was undertaken to check some of these predictions. Nine solid
rectangles were presented on a computer in random pairings to 35 graduate students.
The stimulus design was orthogonal in a metric width-weight coordinate system
(heights: 1.1, 2.1, 3.1 cm; widths 2.7, 5.4, 8.1 cm). The rating scale varied from 0
(“identical”) to 9 (“most dissimilar”). Since systematic difference between subjects
were found on the basis of Hotelling T? tests, the data were analyzed for 3 groups
(EQ group, 20 subjects; UP group, 9 subjects; DN group, 6 subjects) separately. The
outcome of the MDS analysis will be reported in more detail elsewhere.

For the present article only one finding of this empirical study is rclevant, because
it has broader implications and held for all 3 groups equally: the contrasting
predictions of violations of the triangle inequality by the MBR metric, the minkowski
metrics and the monotonicity hypothesis.

Since the monotonicity hypothesis posits consistent violations of the triangle
inequality, it predicts that larger distances will be consistently overestimated relative
to smaller distances. This bias will be most pronounced for collinear segmental
comparisons, which should be subadditive. In contrast, the MBR hypothesis predicts
systematic underestimation of larger distances and hence superadditivity for collinear
segments. Finally, all minkowski metrics imply segmental additivity for collinear
comparisons parallel to the coordinate axes. The city-block metric further implies
segmental additivity for diagonal comparisons.

One can therefore distinguish between these hypotheses on the basis of the
proportion of violations of the triangle inequality in the observed data, and, if one is
willing to assume that the underlying dimensions are known in advance, on the basis
of collinear comparisons. In this case the sharpest test is provided by collinear
comparisons which Attneave used to estimate his additive constant. Thus, let A, B, C
be 3 points on a line with B between 4 and C, and let d|A4, B| =a. d[B,C|=b and
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d|4, C] = ¢ be the distances between them (Fig. 1b). Then the mean of the simple
function P

S=a+b-c 4.1)

will be ncgfuivc if the triangle inequality is consistently violated, it will be positive if
they are distances but subadditive, as the MBR predicts, and it will be zero for
comparisons parallel to the coordinate axes if the distances are segmentally additive
along these directions, as are all minkowski metrics:

(fl) E(f) =0 if violations of the triangle inequality are random and the data
are minkowski distances,

(b) E(Sf) < 0 if the monotonicity hypothesis is true,
(c) E(S)>0if the MBR hypothesis is true.

The empirical distributions of f we obtained in our study are givén in Fig. 4 for the 3
:
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Fig. 4. Distributions of discriminant function S=a+b—c for 3 groups of subjects, and for
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groups of subjects and for the side comparisons and the d.iagona.l comparis?ns
separately. All 6 distributions have clearly positive means. This ﬁndn}g contradicts
the monotonicity hypothesis, confirms that the data are distances, and it rules out all
minkowski metrics. Finally, it is in agreement with the MBR hypothesis.

In conclusion, I wish to emphasize (a) that no claim is made that the MBR
hypothesis will be true in general, (b) that it is limited to bounded scz}lcs (where the
bounds could be subject-induced, however), (c) that it is predicated on the
assumption that subjects attempt to use a city-block-like comgosilion rule, and
finally, (d) the condition E(f)> O is only necessary, not sumc!enl for (h‘c. MBR
hypothesis to be true. Corroborating evidence is provided, at least in theory, |f'the fit
with city-bloék metric is markedly improved by the inverse tanh transformation. In
practice, the definition of “marked improvement” may be difficult, however.

5. A SuBADDITIVE CONCATENATION FOR
NoORMS wiTH NATURAL BOuNnDs

Viewed as a binary operation,

d (5.1

m_(a'*'b)/(l +ab)=a®b
in the arguments a, b, one finds that @ is symmetric and associative, has_neutral
element O and that an inverse operation exists in the half-open interval |0, 1) given by

a Qb= (a-—b)/(l—ab), 0ga,b< 1. (5.2)
If one applies the same logic used to motivate the MBR as a distance function to
norms in one dimension, one obtains the subaddtive concatenation

n;@n;, = (n,j + oy )/(1 + M), 0g<n; <! (5.3)
for the norms n;; = |x; — x;| of line segments separating three ordered points i j <k

on a l-dimensional continuum x.
This concatenation rule predicts underestimation for doubling,

X ® x =d(x), (5.4)
d(x) = 2x/(1 + x?), 0 xgK I, (5.5)
overestimation for halving,
h(x)® h(x)=x, (5.6)
h(x)= {1 - (1 —x)"?/x, 0<xg |, (5.7)
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and overestimation for middling,

(5.8)
(5.9)

mx, )@ mx,p)=x®yp,

mex )= 14y = (L=x)" (1= p) ")/ [x +5],  0<x<y< L.

The halving function is convex and the doubling function concave over the interval
[0, 1). Hence, if one were to approximate these functions with power laws, then the
exponent for halving would be larger than 1 and the exponent for doubling smaller
than | (Fig. 5).

In Schénemann (1982) it was suggested that this concatenation may be
appropriate for psychophysical data if the responses are subject to natural upper
bounds. An example is velocity perception, where subjects are incapable of
discriminating between velocities which exceed a certain upper limit. As Caelli,
Hoffman, & Lindman (1978) found, this upper limit varies from subject to subject.
This examples is, of course, very close in spirit to the precedent from physics. Caelli
et al. (1978) pursued the analogy still further by computing so-called “Lorenz
transformations™ to account for their data. Formally, these transformations are
motions in minkowski spaces, that is, in the simplest, planar case, l-parameter
transformations which preserve hyperbolae as unit disks. Caelli et al. (1978)
calculated these motions as a funciton of the highest speed a subject was still.able to

distinguish. and then used them to predict length contractions obtained in a separate
experiment.

—

dtx} hix)

1.

FiG. 5. Doubling function d(x) (Eq. (5.5)) and halving function h(x) (Eq. (5.7)) implied by I-
dimensional concatenation (5.3). The tangents are the veridical doubling and halving functions: d(x)
underestimates and 2(x) overestimates.
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In loc. cit. it was further a\rgued that even when the connection with physics is less
immediate than in the Caelli et al. (1978) study, the analogous concatenation rule for
norms (5.1) may be useful whenever the continuum involved can be expected to be
bounded above, and the bounds are natural, rather than experimenter imposed. The
psychological motivation for this expectation is essentially the same as was used to
motivate the MBR. Similarly, preprocessing of the data with the hyperbolic tangent
transformation may then often remove seemingly bizarre distortions of psycho-
physical functions if they are caused by natural bounds.

Thé main point is simply that bounds, whether real or experimenter imposed, rule
out additive structures because they conflict with the Archimedean axiom.
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