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On the Formal Differentiation of Traces and
Determinants

Peter H. Schonemann
Purdue University and Universitéit Bielefeld

A compact notation for obtaining and handling matrices of partial derivatives is
suggested in an attempt to generalize “symbolic vector differentiation” to matrices of
independent variables. The proposed technique differs from methods advocated by
Dwyer and MacPhail (1948) and Wrobleski (1963) in several respects, notably in a
deliberate limitation on the classes of scalar functions considered: traces and determi-
nants. To narrow interest to these two classes of scalar matrix functions allows one to
invoke certain algebraic identities which simplifies the problem, because (a) the
treatment of traces of products of matrices can be reduced to that of a few representatives
of large equivalence classes of such products, all having the same formal derivative, and
because (b) the more involved task of differentiating determinants of matrix products
can be translated into the more amenable problem of differentiating the traces of such
products. A number of illustrative examples are included in an attempt to show that the
above limitation is not as serious as might at first appear, because traces and
determinants apply to a wide range of psychometric and statistical problems.

In this paper an attempt will be made to motivate a possible
compact notation for what shall be called “formal matrix differentia-
tion”! of certain scalar matrix functions. By this is meant the partial
differentiation of such functions with respect to each of the elements of
a matrix and the subsequent rearrangement of these partial deriva-
tives in a matrix of the same order.

The need for an efficient notation has been recognized before,
especially with vectors as independent variables, although the treat-
ment it has been accorded in the literature is sporadic and often
sketchy (Aitken, 1959; Anderson, 1958; Bargmann, 1957; Bargmann &
Mah, 1961; Bock & Bargmann, 1966; Cooley & Lohnes, 1962; Graybill,

The term “formal”, rather than “symbolic” was chosen in sympathy with a remark
by Wrobleski (1963, p. 5): “It is this author’s feeling that the adjective “symbolic”
imputes a secondary or colored meaning to this basic mathematical notion of a matrix
derivative of a scalar function of matrix variables . . .” After having made his choice of
terminology the present writer was somewhat disheartened to read Bellman’s semantic
appraisal: “By the term “formal” we mean with attention to the rigorous aspects such as
the existence of partial derivatives, interchange of limits, and so on. It is a fine word to
cover a multitude of mathematical sins.” (1961, p. 58 ff.).

Editor’s Note: The contents of this paper first appeared in a University of North
Carolina Research Bulletin in 1965. It contains important basic results on matrix
derivatives, and pays special attention to their application to problems in psychometrics.
Many papers have utilized these elegant results, and, although much subsequent work
on matrix derivatives has appeared (see Nel, 1980, for an excellent summary), this paper
remains, in an important sense, undated. We are delighted that Professor Schénemann
agreed to add it to the literature. Professor Schénemann is currently in Germany, on
sabbatical leave from Purdue University. His work abroad is receiving support from the
Deutsche Forschungsgemeinschaft.
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1961; Kaiser & Dickman, 1959; McKeon, 1962; Rao, 1952; Schone-
mann, 1965, 1966). It is anticipated, however, that interest in such
efforts is likely to increase in the social sciences in proportion with the
general increase of interest in elementary matrix methods, as it
continues to be promoted through modern computing equipment.

One of the better known, and perhaps most systematic, efforts in
this field is embodied in a paper by Dwyer and MacPhail (1948). This
work has been elaborated upon since, notably in a report by Wrobleski
(1963). Wrobleski attempts to put the original work of Dwyer and
MacPhail on what the present author can only surmise to be a more
respectable mathematical basis (invoking such concepts as Frechet-
Gateaux differentials, Banach algebra, Hausfdorf differentials). More-
over, he generalizes this work in some of its more practical aspects,
notably by extending the technique to include higher order deriva-
tives.

The present efforts are more modest than Wrobleski’s, and indeed,
more modest than Dwyer and MacPhail’s. In a rough sense the present
paper aims in the opposite direction (relative to Wrobleski’s) in that it
specializes, rather than generalizes Dwyer and MacPhail’s original
work. By trading some generality it is hoped to gain some practicality.

To be more specific, the derivatives in this paper will always be in
matrix form, without further rearrangements as are sometimes neces-
sary in Dwyer and MacPhail’s technique. Nor will there be any need
for dummy matrices, (of type “J” or “K”) which figure quite prominent-
ly in Dwyer and MacPhail’s, and also in Wrobleski’s work. Sometimes
the final removal of such dummy matrices can be nearly as bothersome
as the original problem might have been, had it been left in summation -
notation. To illustrate, consider the case where the scalar function of
the (independent) matrix is a determinant (possibly of a matrix
product). In this case, which as will be seen is of no small practical
interest, Dwyer and MacPhail’s technique provides convenient means
to express the formal derivative of each element of the matrix of the
determinant with respect to the independent matrix. Each one of these
derivatives will be a matrix, possibly involving one or more dummy
matrices.

These individual derivatives, one might hope, somehow relate to
the derivative of the original function of the elements, i.e., to that of
the determinant. But the problem of putting Humpty Dumpty together
again is left to the ingenuity of the user. Possibly a more polite way of
saying this would be to note that the Dwyer and MacPhail technique is
impractical for determinants. Considering that every maximum likeli-
hood problem based upon the multivariate normal distribution (or
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Wishart distribution, for that matter) involves determinants, one
comes to be less impressed with the apparent generality of the Dwyer
and MacPhail technique.

On the other hand, the presently proposed technique has its
obvious limitation in terms of the scalar functions considered. But the
contention is that those functions chosen, traces and determinants,
cover a wide range of applications, statistical as well as psychometric.
As is well known, these two classes of scalar functions are not
unrelated but rather constitute but two members of a larger class of
(symmetric) functions and as such share certain properties which will
be found convenient for the present purpose. Traces, in particular, are
very simple functions of the (diagonal) elements of a square matrix.
Notwithstanding their simplicity, traces provide a powerful tool for the
formulation of least squares problems. (e.g. Bargmann & Mah, 1961;
Cattell, 1944; Cliff, 1966; Eckart & Young, 1936; Edgerton & Kolbe,
1936; Gibson, 1962; Green, 1952; Horst, 1936, 1937; Horst &
MacEwan, 1957; Hotelling, 1933a, 1933b; Howe, 1955; Hurley &
Cattell, 1962; Johnson, 1964; Joreskog, 1963; Mosier, 1939; Pearson,
1901; Schénemann, 1966; Tucker, 1951), and also for the formulation
of side conditions in optimization problems, as will be shown in Section
5. Traces, it is true, could have been handled with the technique
developed by Dwyer and MacPhail without much difficulty. As indicat-
ed above, this is not true for determinants, a second class of scalar
functions which figure prominently in applied, especially multivari-
ate, work (Anderson, 1958; Bargmann, 1957; Bargmann & Mah, 1961;
Bock & Bargmann, 1966; Cooley & Lohnes, 1962; Dwyer, 1958;
Graybill, 1961; Jéreskog, 1963; Kendall, 1957; McKeon, 1962; Rao,
1962; Todd, 1962). As will be shown the derivatives of these more
complicated functions can be expressed in terms of those of traces.

In Section 2 the formal differentiation of traces will be discussed in
some detail. A number of specific derivatives will be given which will
serve as building blocks for later use as illustrated in Section 3, where
a number of rules will be given for obtaining matrix derivatives of
more complicated functions in terms of simpler ones. In Section 4 the
connection with determinants will be made and in Section 5 a number
of applied problems, most of which are well-known, will be reformulat-
ed in terms of the techniques discussed in the earlier sections.

2. Formal Differentiation of Traces?

Dwyer and MacPhail, in their paper, distinguish between two
kinds of “matrix derivatives”, (I) The derivative of a matrix with

2Parts of this section are taken from Schénemann (1964).
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partials separately, it may be convenient, for some purposes, to
arrange them in a matrix of the same order as x, the independent
(matrix) variable, and to denote this n X k matrix simply as atr(Y)/ox,
ie.,

(2] tr(X'AX)oX = (otr(X'AX)/oxy), i=1, n, j=1, k.

So far few gains seem to derive from such a convention. One notes
however, that the scalar tr(Y) is of a somewhat peculiar nature and
subject to special algebraic conveniences which, if combined with the
suggested notation, are apt to lead to considerable algebraic simplifica-
tion in least-squares work.

To see this, one first notes that the trace of a matrix is but one
member of a whole class of scalar functions of a square matrix, which
are sometimes (Bellman, 1960, p. 95) denoted @, and which appear as
coefficients in the characteristic polynomial of the matrix, say Y. Let Y
be n X n with roots r;, then

Or) =3, (~1F D, % (R=01,...,n)

for all roots r, where ®, is the determinant of Y, ®; is the trace of Y,
and all ®, are chosen so that &, = 1 (see, e.g., Bellman, 1960;
Finkbeiner, 1960; Hohn, 1958).

For all ®,, the following property holds: Let Y = ABC (A, B, C, all
square). Then

@, (ABC) = @, (CAB) = &, (BCA),
but
®, (ABC) # &, (ACB),

in general. That is to say the scalar functions ®, are invariant under
cyclic permutations of the fractors of Y. A special case, of course, is the
commutativity for traces and determinants of matrix products with
two factors, which holds for traces even where the factors are rectangu-
lar.

Furthermore traces, being based on square though not necessarily
symmetric matrices, have the convenient property of invariance under
transposition, i.e.,

tr(Y) = tr(Y"),

which is obvious because transposition does not affect the diagonal of a
matrix.

These two properties can be used to partition the dependent
variables of derivatives of traces into equivalence classes. For exam-
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ple, tr(XA) = tr(AX) by cyclic permutation, tr(A'X’) = tr(X'A’) by
transposition, so that all four “trace equivalent forms” i.e., the traces of
XA, AX, A’X’, and X’A’ will have the same “formal derivative,” A'.

On the other hand, it is a direct consequence of the definition in
Equation 2 that transposition of the independent variable, i.e., X, will
transpose the derivative, i.e.,

atr(Y)/aX' = (atr(Y)/0X)'.

The problem, then, is to find the derivatives of a representative of
a trace-equivalence class. This can be accomplished in several ways,
for example by recourse to summation notation, by recourse to “vector
derivatives,” or even by writing some of the terms of the trace
explicitly and going back to matrices after some of the partial deriva-
tives have been taken. To illustrate the vector technique, let

a1
A= a) | and X = [xy, x;, xz]
ax
where £ = m. Then
tr (AX) = 2, ¢} X;.

One verifies immediately that dajx;/dx; = a;, so that

atr(AX)/eX =(ay, ..., a) = A,

In similar fashion a number of other derivatives can be found,
some of which are summarized in Table 1.

Although it is not anticipated that this presentation will be
entirely satisfactory for some of the more mathematically inclined
readers it should be noted that the proposed technique is capable of
further formalization, should that be desired. The following few
remarks are intended to sketch a possible basis for such formalization.

First one notes that what has been called “symbolic vector
differentiation” can be put on a somewhat more formal basis. Given a
unit length vector w (i.e., w'w = 1) and some second vector xo, consider
the scalar
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Table 1

Some Matrix Derivatives of Traces

Y Trace-Equivalent Forms race v

Cyci. Permut. Transpos. try/ox Itry/ox’
A - Al 0 0
X - X* 1 I
AX XA X*A' A'X’ A A
A'X XA X*A AX' A A
X'AX XX'A AXX* X*A'X A'XX' XX'A CA+A' X X'CAtA")
XAX' X' XA AX'X XA'X' A'X'X X'XA' X(A+A') (A" +AX"
(3] dufiey) = lim [0t 1) = [&o)

t—0 t

where t is a scalar. This limit, as is well known (see e.g., Crowell, 1962,
p. 234; Faddeev & Faddeeva, 1963, p. 116), defines the “directional
derivative” of f at the point x, “in the direction of w”. If one chooses w
successively so as to give the n directions parallel to each of the
(mutually orthogonal) coodinate axes, i.e., if one lets w¥' =1(0,0,...,1,
..., 0) (with unity as the ith component) then Equation 3 will yield 4f/
dx;, for each i, in accordance with the standard definition of a partial
derivative (see e.g., Olmstead, 1959, p. 366). Therefore, if one writes
Equation 3 as the scalar product of some unknown vector u with the
directional vector w

[4] D, flxg) = w'u

then this argument shows that u is identical with what was called the
“symbolic vector derivative” i.e.,

u = df/ox,

evaluated at x, (since multiplication with w'” simply picks off the ith
component of u). To demonstrate that such a definition of 3f/dx indeed
“works”, consider again Equation 1:

f=x'Ax
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D, flx) = lti.gl {x + tw)AX + tw) — x'Axyt
= 135)1 (x'Ax + tw'Ax + tx'Aw + t? w'Aw — x'Ax)/t
= ltig)l WA+ Ax + twAw
= wA + A,
whence
u = dx'Ax/ox = (A + A')x,

as in Table 1 (some authors, e.g., Rao, 1952, p. 21 ff. simply give 2Ax for
this derivative, tacitly assuming that A is symmetric).

This approach is easily extended to the case where fis a trace and
the independent variable a (not necessarily square) matrix. To see this
one notes that matrices of a given order form a vector space, in the
abstract sense. To see this also in the less abstract sense, suppose one
“expands” a given matrix into a supervector having the columns of the
matrix as components, for example. The expressions of the type tr(A'B)
will correspond to scalar products of such supervectors. In particular,
the so called “Frobenius norm” of a real matrix A, given by F(A) =
[tr(A’A)1Y2 (Taylor, 1955, p. 227), corresponds to the “length” of such
supervectors and can be used to measure the distance of the matrices
from null. Making use of such a correspondence in Equations 3 and 4,
one arrives at

(X + tY) — f(Xy)
t b

Dyf(X()) = 11110'1
>

and
Dyf(Xy) = trY'U, where now tr(Y'Y) = 1

and where the matrix U corresponds to what is called here the “formal
matrix derivative of /7 {f being a trace), i.e.,

U = 93f/8X, evaluated “at the point” X,.
For illustration, consider df/6X where f = tr(X'AXB).
Here one finds for

Dyf(Xo) = ltir? {tr((X + tY)'AX + tY)B — X'AXB)}/t

= lim tr(X'AXB + tX'AYB + tY'AXB

0
+ t2Y'AYB — X' AXB)/t
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= tr{Y'(A'XB' + AXB)},

making use of
tr(X'AYB) = tr(BX'AY) = tr(Y'A'XB’)

so as to be able to factor out Y'. The matrix postmultiplying Y" is the
desire “formal derivative” of f, viz.

(5] atr(X'AXB)sX = AXB + A'XB’

3. Somé General Rules for the Formal Differentiation of Traces

So far only two specific formulae for the formal differentiation of
traces have been established:

(6] otrAX/eX = A’, and
[7] atrX'AXB/aX = AXB + A'XB'.

But these two specific formulae cover a large variety of possible matrix
expressions if used in conjunction with a few general rules for
manipulating such expressions. Of such general rules, three have been
mentioned already:

[8] otrY/aX = otrY'/3X (transposition of dependent variable)
9 atrUVW/3X = atrWUV/aX (cyclic permutation)

[10] otrY/aX' = (otrY/8X)’ (transposition of independent
variable).

To illustrate the use of these rules, suppose one wishes to find the
derivative

[11] atrAX'/oX.

This expression is not obtainable from Equation 6 by transposition
and/or cyclic permutation. Rather, it belongs to the second possible
equivalence class for traces of two factors. Use of Equation 10 and a
simple substitution yields a representative of this other equivalence
class at once: From Equations 6, 8, and 9 one knows that

otrBX/6X = atrX'B'/0X = otrB’'X'/9X = B.
Setting A = B’ one obtains
MrAX'/oX = A
as the desired result.
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Likewise, one obtains for the corresponding alternative of Equa-
tion 7

atr XAX'B/oX = BXA + B'XA’

as the reader may verify without difficulty. As will be seen in Section
5, expressions of this type are sometimes useful for formulating side
conditions with the aid of Lagrange multipliers.

For most practical applications, it is hoped, the summary in the
Appendix will serve to give the needed derivatives. But, as users of
tables of integrals will appreciate, it is sometimes necessary to make
some minor transformation to a more common form before tables can
be applied. For this purpose the invariance under transposition and
under cyclic permutations will be more convenient, as will be the
“product rule,” now to be discussed.

For its derivation a few notational conventions are needed. First,
let 3Y/9t denote a matrix with elements dy,;/0t. With this notation
(which is rather common, see Bellman, 1960; Browne, 1958; Fink-
beiner, 1960) one verifies

oUv. U

oV
T e -+ —_—
dt ot v+u at

(12]
as an immediate consequence of the product rule of elementary

calculus and the definition of a matrix product. Similarly one finds
(Finkbeiner, 1960)

[13] tr(aY/at) = a(trY)/at,

as an immediate consequence of the definition of 3Y/dt, above, and that
of the trace operator.

Now let it be agreed always to subscript the symbol for a variable
(here the last letters of the alphabet) with “c” if they are to be held
constant for purposes of differentiation. To illustrate, take otrU'AU/
38U, which is equal to (A + A")U as a special case of Equation 7, with B
= I. Subscripting U’ with “¢” would lead to dtrU, AURBU = (U'A) =
A'U, as in Equation 6.

With this notation, and substituting a particular element x;; (a
scalar) for ¢, one can rewrite Equation 12 as.

tr(UV)/dx;; = oltrUV,)/ox;; + HtrU V) ox;;

which, together with Equation 13, yields for a whole matrix X of such
elements x;;

[14] atrUV/9X = atrUV /0X + atrU.V/eX
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as the “product rule for formal differentiation of traces”.
To illustrate its use, consider again Equation 5:

tr(X'AXB)/oX = atrX"(AXB)./0X + otrX XB/oX
otrX'(AXB) /10X + otr(BX'A) . X/6X
AXB + A'XB'.

In using this product rule, which evidently is of great convenience
in practical work, care must be taken that the independent variable (X
and/or X') appears separately as an independent variable as often on
the right side of Equation 14 as it appears on the left side. To illustrate,
the foregoing example was broken down into tr(X')(AXB). It could also
have been broken down into tr(X'A)XB) or even into tr (X {A)NX)(B),
although the latter partition would seem somewhat redundant. But all
these partitions would have yielded the same, correct, result. In
contrast, the partition tr(X'AX)(B) would yield an incorrect result as is
easily verified.

As a further application of the product rule, consider expressions
of the type tr(X 'A), which one encounters in maximum likelihood
problems involving the multivariate normal distribution, for example.
The product rule can be put to use for finding the formal derivative of
such expressions involving inverses:

Consider

I

atrY " YoX = atrY 2Y/eX
= otrY;%Y/oX + otrY %Y./0X,
by the product rule. For the second member of the right side one finds
otrY 2Y,./0X = atrY 'Y Y. /0X + otrY TIYIYY,/6X
atr(Y, Y- HY " YoX + otrY WYY )0X

i

i

24trY "Y/6X, whence
atrY Y6X = atrY %eX + 2 otrY YoX or
[15] atrY YoX = —otrY.%Y/oX.

To generalize Equation 15 to a form more directly applicable to
problems involving the multivariate normal distribution, let U™t =
Y 'Asothat U 2= Y 'AY 'A and U = A~ 'Y, where, of course, it is
assumed that all these inverses exist. Then from Equation 15, atrU Y/
oX + —atrU-2U/X = —atr(Y 1AY 1), A71Y/8X, so that otrY 1A/6X
= —gtr(Y LAY 1).Y/0X, which contains Equation 15 as a special case.
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Finally, two rules will be given which apply when the independent
variable is restricted in some fashion. The most common restriction,
for square independent variables would be symmetry. This particular
restraint, however, is more conveniently handled with the help of
Lagrange mutlipliers; i.e., by introducing the side condition X — X" =
0, which will be taken up in Section 5.1 and 5.2. At this point two other
kinds of restrictions on X will be discussed viz. the case where

(i) X = D = diagonal, as, for example, the matrix U 2 in factor
analysis, and the case where
(ii.) X = «I, i.e., X is a scalar matrix.

In the first case, where X = D, = diagonal, let D, = U, ie,,

. —_ — —
X1 0 Ui Uz - Uln
Ug1 Ugg " Uzp
X =
. 0 Xn p— . Uni Uno Unn ]

define a correspondence between the (unrestricted) matrix U = (u;;)
and the (diagonal) matrix D,. Then the partial derivatives of some
function f, with respect to the x; can be expressed in terms of the partial
derivatives of f with respect to the u;; by means of the chain rule (for
several variables as follows:

af af aull af duyg n + af aurm 6f
— + "o =
0x;  duypp 0xy duig 0xy Uy, 0x1 duqy

because du;;/0x, = 0 for all j # 1,
= 1forallj=1.
More generally, for any i,

Bf/ax, - aﬁauii,
for analogous reasons, whence, for the case where X + D, = diagonal,
3f1aX = diagonal (3f/aU)

where U is unrestricted.
Precisely the same kind of reasoning yields, for the case where X
= xI = scalar,

[16] affox = tr(aflal)
where U is unrestricted.
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4. The Reduction of Formal Derivatives of Determinants
to Those of Traces

Mention of what is here called “formal differentiation” of determi-
nants appears rather early in the literature, often simply labelled “the
derivative of a determinant” (Aitken, 1959; Anderson, 1958; Turnbull,
1960; Turnbull & Aitken, 1932; Wedderburn, 1964). The reason,
perhaps, is that such derivatives emerge quite naturally when one
considers the expansion of a determinant by rows, or columns. Such an
expansion, as is well known, reproduces the determinant as a weighted
sum of the elements in the row (or column), the weights being the
signed minors corresponding to these elements. These minors are
 known not to contain any element of the row (or column); in fact, one
customarily obtains minors by “striking out” the row and column in
which the element appears. This observation leads therefore to the
conclusion that “the derivative of a determinant” is simply the
transposed adjoint of the corresponding matrix, or

{17} oYY = @'
where
Q = Y1y 1,
and 1Y| denotes the determinant of Y.
Consider now the more useful case where Y is some matrix
product containing the independent matrix variable X (and/or its

transpose) one or more times and where the problem is to find 81Y1/6X.
By the chain rule

[18] NV Vo = 2. 2 [91Y1ay; 8y, /6%,]
i

= 20 2. qji [09;,/0%,)
i

where y;; and g;; are elements of Y and @ = IY1Y ™}, respectively, Xpq 18
a fixed element of the matrix X and where use was made of the result
in Equation 17. Equation 18 can also be written as a trace of a matrix
product, the matrices being @' = 31Y1/9y,;, with elements g,;, and 3Y/
3X with elements dy;;/0x,,, for a fixed x,,, as in Section 3. With this
notation Equation 18 could also be written

[19] 0I1Y|/oxpy = tr@Q, 0Y/0xy,
= 3trQ.Y/ox,,,
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where again the fact tr(3Y/o) = d(trY/a¢) was used, as in the derivation
of the product rule. The form in Equation 19 allows for immediate
generalization to a whole matrix of elements x,,, giving

{20] aYleX = otrQ.Y/oX

as the desired result.® Formula (20) then allows the reformulation of
problems involving determinants into problems which involve only
traces, the latter being much more tractable functions. A brief example
will suffice for illustration:

ANAXI/9X = otrQ AX/0X = (QA) = A'Q.
= JAXIA'AX)Y.

5. Some Illustrative Examples

5.1 Lagrange Multipliers

Seldom if ever will the user be confronted with an optimization
problem where the unknown matrix X is entirely unrestricted. It may
be appropriate, therefore, to preface the discussion of some specific
applications of the proposed technique with a brief sketch of the
“method of Lagrange multipliers”. This method, which is employed
quite frequently when certain (side) conditions are to be imposed on
the solutions x;; in X, can be formulated in terms of traces.

To impose restraints on the solution matrix (or vector, as the case
may be) often but not always amounts to searching for a lesser than
the “best” optimum of the function (boundary points ignored), namely
an optimum attained in the subspace defined by the constraints.
Sometimes this subspace contains the “best” optimum. In such cases a
constraint may be intended to select a particular solution out of a
subset of equivalent solutions all which optimize the function. This is
the case, for example, in certain scaling problems, when origin and
overall dispersion are arbitrary, or in certain least-squares problems
where a given matrix is to be approximated by the Gram product (XX")
of an unknown matrix X, which then is only defined up to rotation: In
this sense the well-known property of principal tomponents to be
uncorrelated in the sample is simply a question of identification, not a
direct consequence of a least squares formulation. The same problem
arises in factor analysis, when the stipulation is made that, e.g.,

3The foregoing line of argument was suggested by Professor Bock. It is better than
the present author’s original proof of Equation 20, which is therefore omitted.
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F'U~2F be diagonal, as in Bargmann (1957) and Bargmann and Mah
(1961), for example. In all these cases the constraint may be disregard-
ed for purposes of optimization with the result that the conditional
equations will have more than one solution, all yielding the “best”
optimum of the function. Having arrived at this set of solutions we
then invoke the constraint to select the desired solution (for an
example see Section 5.8).

There are other cases where the constraint genuinely affects the
optimum itself. For example, if it is desired to find a transformation
matrix 7' so that AT approximates a given B in a least-squares sense,
then the solution will, in general, be “best” if T is left entirely
unspecified, as in regression problems (Graybill, 1961). It will be
somewhat “less good” in general, if the relatively weak condition
diag(T"T) = I is imposed, as in the “oblique Procrustes problem”
(Hurley & Cattell, 1962; Mosier, 1939) and will be “least good” (i.e. the
sum of the squares of discrepancies will be largest), in general, if the
stronger restraint is imposed that T'T = I, as in the “orthogonal
Procrustes problem” (Green, 1952; Schonemann, 1966). In such cases
the preferred method of introducing one or more side conditions is the
technique of Lagrange multipliers (see, e.g., Taylor, 1955, p. 198)
which, perhaps, owes some of its popularity to the fact that it applies
whether or not some of the unknowns can be eliminated algebraically.
Evidently such an elimination becomes more difficult with more
unknowns.

The method is described most conveniently in actual use with a
small example. Let a half-sphere be described by

(x—a)2+(y—-b)2+(z—c)2=k2,220

with ¢ = 0. The function z evidently attains its absolute maximum % at
the center of the circle, (a,d), in the xy-plane. Now suppose the side
condition x + y — m = 0 is imposed. A direct solution of this new
problem would be to eliminate one of the variables, say y, with the aid
of the side condition, and to optimize the new problem with respect to
one unknown, x:

y=m-x
f=22=k ~{x-a?+m—-x-b%
92%/0x = 0 — {2(x — @) + 2(m —x — (=D} = 0
x=(m+a-— b2
In contrast, to apply the method of Lagrange multipliers, an additional

APRIL, 1985 127



Peter H. Schéneman

(third) unknown (viz. the Lagrange multiplier) is introduced, let it be
u. A new function, say g, is set up where g is the sum of the original
optimization criterion (/) and the product 2 being a formulation of the
restraint such that, where it is satisfied, 2 = 0. Here

[21] g=f+tuh=22+x+y—-m.

This equation is to be differentiated with respect to x and y, yielding, in
this case, two equations g;, g2, which together with % define a solution
for the three unknowns x, y and u:

g1 =0gldx = —2x —a) +u=20
8o = dgldy = 20y -~ b)+u=20
h=x+y-m=0
whence
x—a=ul2=y—-bx=at+y—-b=a+m-x-0>
x={a+m— b2,

as before.

In the more general case where m side conditions are to be
imposed on the solution, m such Lagrange multipliers will be needed,
i.e., in this case

g=r+ 21 uh; (xq1, xo, ..., X,)
will have to be differentiated partially with respect to the n unknowns
x; and the resulting n + m equations obtained by setting these partial
derivatives to zero need be solved for the n x; and the m u;.

This method is used widely in the statistical and psychometric
literature. (e.g. Anderson, 1958; Cliff, 1966; Cooley & Lohnes, 1962;
Dwyer, 1958; Edgerton & Kolbe, 1936; Graybill, 1961; Green, 1952;
Horst, 1937; Hotelling, 1933, 1935a; Joreskog, 1963; Kendall, 1957;
McKeon, 1962; Mosier, 1939; Rao, 1952; Schénemann, 1965, 1966;
Tucker, 1951), and in view of this popularity it is rather fortunate that
it can be reformulated in terms of traces.

To see this it will suffice to consider expressions of the type

[22] trA'B = Z Z a;;j b;;
i

This is a sum of products of “corresponding” elements in A and B, with
the element q;; corresponding to the element b,;. Suppose now the
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object is to impose a set of side conditions on the n X m elements x;; of
an unknown matrix X, and suppose these side conditions can be
formulated in terms of matrix algebra involving the matrix X and
some constant matrix C. Two (quite arbitrary) examples might be

X'A+ Cor XPX' AC=C

Such conditions can be reformulated as
XA-C=0o0rXPX' +AX -C=0

Let the resulting matrix, which is equal to the null matrix, be called H
= H(X), with elements h;;, and let H be of order p X g. The method of
Lagrange multipliers requires that every one of the p X g elements A;;
be multiplied by an unknown multiplier u,;; and all these p X ¢
products be summed before adding them to the scalar function ffX) to
obtain g(X) as in Equation 21. In view of Equation 22 this end is
accomplished by simply writing

[23] g=f+trUH.

Assuming that flx) was a scalar function which allowed expression in
terms of traces and/or determinants involving X, Equation 23 could
then be treated by the techniques described in the preceding pages, as
illustrated in the following pages.

5.2 Least-squares Problem 1: To Approximate a Given Matrix A by
a Symmetric Matrix X

In this, as in all other linear least-squares problems, the object is
to minimize the sum of squares of a matrix of (possible weighted)
discrepancies. This sum of squares, fortunately, is also expressible in
terms of traces. In the specific example, let

A=X+E.

The object is to find X subject to H(X) = X — X" = 0 so as to minimize f
= trE'E. Therefore, one has to differentiate (Appendix, F25)

g = trE'E + trU'(X — X').
This derivative, according to the Appendix (F11, F12, F28) comes to
0glaX = —24 +2X+ U - U

and is to be set to zero as a necessary condition of an extremum of g.
Hence

APRIL. 1985 129



Peter H. Schéneman
X=A+U-U2
X =A"+ U - U2
or
X=(A+A2

5.3 Least-Squares Problem 2: To Approximate a Given Matrix A by
an Orthogonal Matrix X

This problem was considered by Gibson (1962), using a somewhat
different route. It differs from the preceding one in terms of the side
condition. Let again

A=X+E.

Here the object is to find X subject to H(X) = X'X — I = 0 so as to
minimize f = trE’E. Therefore, one has to differentiate

g=trE'E + trUX'X - D.

This derivative, according to the Appendix (F11, F12, F14, F21, F28),
comes to

dgloX = —2A + 2X + X(U + U").
3g/aX = 0 leads to
XU+ UY2=A-X,or,inviewof X'X =1
(U+UY2=XA-1= U+ UY/2, so that
X'A=AX.

This use of the symmetry of U + U’ to eliminate the (unknown) matrix
of Lagrange multipliers U is often useful in problems of this type
(Schénemann, 1964, 1966). Assuming now A to have an Eckart-Young
decomposition (Eckart & Young, 1938)

A = VDW
(with WW = V'V = Z, D = diagonal), one finally arrives at
' X =VW,

as shown in Schénemann (1964, 1966).

5.4 Least-Squares Problem 3. A Factor Model Proposed by Joreskog

Joreskog (1963), in his monograph, presents a new factor model
which is closely allied with those of Guttman, Harris, Kaiser, Lawley
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and Rao (Bellman, 1961; Harman, 1960; Howe, 1955; Kendall, 1957,
Lawley, 1940; Lawley & Maxwell, 1963; Rao, 1955), which allows for
(appropriate) statistical tests, and which does not require iteration.
Joreskog arrives at basically the same technique from various direc-
tions. On p. 36 he treats the problem in a least-squares sense. This
treatment will be taken up here in a purely technical manner. For a
statement of the logic and foundation of the Joreskog model the reader
is directed to Joreskog (1963).

With a minor change in notation (we prefer to write D* where
Joreskog writes D, to avoid broken exponents, and we use F where he
uses A) the problem is to minimize the (weighted) sum of squares of

E=S-FF —tD?
where the weights are given by D = —(diag(S™1))"'* and D is assumed

to be known. The optimization is under choice of F and the scalar ¢. The
criterion Joreskog wants to minimize is, in the present notation,

u = tr(E*'E*)
where
E* = DED = D(S - FF')D — tl,
so that
u = tr(DSD?SD + I — 2tDSD — 2DSD?* FF'D + 2tDFF'D +

DFF'D*FF'D)

making use of the invariance of traces under cyclic permutation, where
convenient. Use of the Appendix (F12, F13, F24) gives for the formal
derivative with respect to F

duldF = —4D? SD?F + 4tD? F + AD*FF D°F,
to be set to zero. Multiplication by —D%2 leads to conditional equation
[25] SD?F — tF — FF'D’F = 0,

which is Jéreskog’s Equation 7.16, but for notation. To differentiate u
with respect to the scalar ¢ one could use the rule in Equation 16,
rewriting Equation 24 as

ur = tr(const + T'T — 2TDSD + 2TDFF'D)
with T now unrestricted. Again by the Appendix (F12, F13)
dup/dT = 2T — 2DSD + DFF'D
whence
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[26] dulat = 2tr(¢el — DSD + DFF'D)

which is Joreskog’s Equation 7.15. Equations 25 and 26 allow for an
algebraic (e.g. noniterative) solution of F and ¢, as shown by Joreskog
(1963).

5.5 Maximum Likelihood Problem 1: To Estimate the Covariance
Matrix of the Multivariate Normal Distribution

This problem is sometimes (Anderson, 1958, p. 44) solved by use of
a theorem which, in effect, states that under certain mild conditions a
maximum likelihood estimate of a one-one transformation of a set of
parameters is given by the same transformation of the maximum
likelihood estimates of the parameters (see e.g., Anderson, 1958, p. 48).
This theorem allows us to phrase the maximization problem in terms
of 371, rather than 3. But this indirect route is not necessary because
use of F16 in the Appendix leads to quite simple algebra even for the
direct solution.

The logarithm of the likelihood function of the multivariate

normal distribution is given by
InL = const — N/2{lniZl + trS ' SIN + & — W'E7'® — b},
(see, e.g., Anderson, 1958, p. 46 or Jéreskog, 1963, p. 34), where

N
S=1ND (x;— % (x; — %
i=1

and x, X, and ji are p X 1. At the point ¥ = {1 this reduces to
{271 InL = ¢y + coflnlZi + tr(S 191,

Using @ = 13137, as in Section 4 and the Appendix (F12, F16, F29)
one finds for the formal derivative of InL

3InL/as = ¢y [(15.71 0trQ,2/03) + atr(X 18271 2/9%]
= ¢y (371 = 371837,

to be set to zero as a necessary condition for an extremum. Upon pre-
and postmultiplication with 2

~

2 =8.

5.6 Maximum Likelihood Problem 2. To Estimate the Components
of a Specified Structure of the Covariance Matrix

This problem has been treated by Bock and Bargmann (1966). In
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its more general form the problem is to estimate the matrices X, Y, and
Z, given S, in

[28] 3 =72 (KXK' + Y)Z,

allowing for the options that Z = diagonal, X = diagonal, Y =
diagonal, Y = yI = scalar. Differentiating Equation 27

InL = c; + co (lnIEI + trE_IS)

with respect to any of the unknown matrices, say V (generically), one
obtains from the Appendix (F16, F29)

[29] 8InL/dV = ¢y (1357 Y10tr@Q,3/0V — otr(3 18371 3/6V
= ¢y (Atr(E™' -~ 7L 837 H.3/6V
= Cg dtrB2/3V

where
[30] B=E"1-371857Y, = 3742 - §). 3!

and ¥ is defined, according to the model, as in Equation 28. This
approach then reduces the seemingly rather involved problem to a
quite simple one. Some solutions are:

Upon differentiation with respect to X, X unrestrained

[31] oInLiX = K'ZE Y2 — S)2"HZ'K = W, say;
upon differentiation with respect to X, X = diagonal (F26)
0lnL/0X = diagonal (W)

where W is defined as in Equation 31.
Upon differentiation with respect to Y, Y unrestrained

(32] dInL/pY = Z' (37X 3 ~ §)E7NZ = T, say;
upon differentiation with respect to Y, Y = diagonal (F26)
dlnL/9Y = diagonal (T,
and upon differentiation with respect to Y = yI = scalar (F27)
olnL/3Y = tr(T)

where T is defined, in both cases, as in Equation 32.
Finally, upon differentiation with respect to Z, Z unrestrained,

[33] dInL/dZ = 2 KXK' + VZ(E XS — S)X7Y) = R, say;
and upon differentiation with respect to Z, Z = diagonal (F26)
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anL/8Z = diagonal (R),

with R as in Equation 33.

Since all these solutions are given implicitly, some iterative
scheme will generally be needed to obtain numerical answers. Bock
and Bargmann have employed successfully the Newton-Raphson
method for estimating the parameters in the above models when Z, X,
and Y are diagonal (Bock and Bargmann, 1966). This method, howev-
er, requires knowledge of the second order derivative which can not be
obtained by the methods in this paper. As an alternative the method of
gradients (Taylor, 1955, p. 2176) or some other scheme based only on
first order derivatives may be tried. Convergence will be somewhat
slower with the latter methods.

5.7 Maximum Likelihood Problem 3: Lawley’s Solution for the Factor
Model

In this model the postulated structure is given by
s = FF' + U?

Lawley (e.g., in Rao, 1952, p. 10) derives estimates of F and U? by
treating each separately as an independent variable. Thus, using
Equations 29 and 30 for brevity, one obtains (F13) for

[34] 9InL/oU? = otrR(FF’ + U%/oF = 8trBFF'/9F = 2BF,
and (F12) for
sInL/oU? = steB(FF' + U?/eU? = strBU%0U* = B
if U2 were unrestricted, so that (F26)
alnL/3U? = diagonal (B)

since U? = diagonal. Whence, in view of the definition of B in Equation
30

BF =0or ' - 382" HF =0
and diag(B) = 0 or diag (5™ - £7'S27H =0
give the conditions for InL (Equation 27) to be stationary. These
equations are given, for example, in Rao (1952). They can be shown to

lead to an eigenproblem on U~ 'SU?, which is also the end result of a
somewhat different approach by Rao (1955).

134 MULTIVARIATE BEHAVIORAL RESEARCH



Peter H. Schéneman

5.8 Maximum Likelihood Problem 4: To Maximize a Likelihood
Ratio Criterion in Factor Analysis

Bargmann (1957, p. 48) wishes to maximize a likelihood ratio
criterion for a test of independence in a partial covariance matrix. The
criterion, which has been used and discussed by various authors
(especially Howe, 1955), can be given an intuitive interpretation as
measuring the departure of a rescaled residual matrix from the
identity matrix. That is, once all common factors have been partialled
out of a covariance matrix the remaining partial covariances should be
a sample from a population of uncorrelated variables so that this
matrix, upon normalization, should be close to the identity. The
criterion in this or some other manner arrived at is

u=IUYR - FFHU™ 1,

where R is a correlation matrix (i.e.; S normalized by rows and
columns so that diag(R) = D), F is a pattern of uncorrelated common
factors and U? is a diagonal matrix of covariance of the uncorrelated
unique factors. The normalization of S into R has introduced a
dependency between the unknowns F and U2, viz., U? = I — diag(FF").
Therefore F and U? can no longer be treated as two independent
matrix variables and the chain rule will have to be used. This, as will
be seen, complicates matters slightly. For convenience let u;, = \{U 2 Uy
= |R — FF'| so that u = uyus and du/F = ugdu,/0F + u,duq/dF, by rules
of elementary calculus. Of the two derivatives involved the first one,
duy/dF, is the more difficult:

dui/oF = alU 2~ YoF = — U272 alU2I/oF,
all by elementary rules. Now

dIU2/oF = I — HA/9F = 3l — diag(FF")/oF
= 9trQ I — diag(FF"))/oF = —otr[Q. diag(FF"))/oF

seems to present a problem. But note that @, = U4 U2 = diagonal (as
well as diag(FF"), of course) so that

[371 tr(Q, (diag(FF"))) = trQ. FF',

because only the diagonal elements are involved on the right side of
Equation 37.
Hence (F13, F29)

JNUGF = —otrQFF'1oF = —2Q.F = - 21U U ?F
which in conjunction with Equation 36 gives
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respect to a scalar, and (IT) The derivative of a scalar with respect to a
matrix. A special case of the first type would be the derivative of a
vector function, which varies with some scalar variable, e.g., time. For
example, a row vector v/ = du'/ot = (0, 1, 2t) is obtained by differentia-
tion the row vector u’' = u'(&) = (1, t, ) with respect to the independent
scalar variable ¢. However for the present purposes the derivatives of
type II are of more interest. A special case would be the derivative of a
quadratic form x’Ax with respect to the column vector x. Let x" = (x,
Xoy ... Xiy ... %) be a row vector of order n. Then the “formal
derivative” of the scalar

f=x'Ax,

to be written df/9x, will be defined as the column vector of partial
derivatives af/ox;, i.e.,

aﬂaxl

{1 affdx ofdx;

aflox,,

(A + A')x, in this example.

This derivative notation is often used in least-squares work
(Aitken, 1959; Anderson, 1958; Bargmann, 1957; Bargmann & Mah,
1961; Graybill, 1961; Kaiser & Dickman, 1959; McKeon, 1962). Gray-
bill (1961) also considers the fairly obvious generalization of the above
definition to include matrices of independent variables, which is of
major concern here.

When X is an n X & matrix, then Y = X'AX is no longer a scalar.
Suppose one considers the sum of the diagonal elements of Y. This sum
(which is defined only for square matrices) is often called the “trace” of
Y and denoted tr(Y), i.e., if

Y = (yy,

then

tr (Y) = Z Yii-

This trace is a scalar variable which can be treated by ordinary
methods of calculus, if the partial derivatives with respect to each
element x;; in x are desired. But rather than considering each of these
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[38] duy/oF = 20U 1U?F.
The second derivative is quite simple in comparison:

duqldF = 3IR — FF'\[oF = atrQ (R — FF")/oF
= —otrQFF'/oF = ~2Q.F
= —2IR — FF'\(R — FF')"'F.

This result, together with Equations 38 and 35 combine to yield for the
derivative of the criterion u

ouloF = (R — FF'1 \WUA Y U™ ?F — \U"% IR - FF'I [R - FF'I"'P)
=|R — FF U (U %F - [R — FF'}"'F)

which is Bargmann’s Equation (5.23), (1957, p. 49).
Premultiplying du/oF = 0 by R — FF' and selecting a solution F
and U? for which F'U 2 F is diagonal leads to

[39] (R U2 —~DF = F(F'U2F)

which, in view of the identification condition, defines F' and U?
implicitly as an eigenproblem for RU =2 — ], or equivalently, for U YR
— UHU? (since the &, of Equation 2. are invariant under cyclic
permutation of the factors, the roots must be). Whence it is seen that
the Howe-Bargmann approach, which can be formulated independent-
ly of any distribution assumption, if desired, is equivalent to the
Lawley-Rao approach (Bargmann & Mah, 1961; Howe, 1955) of Section
5.7 as Bargmann himself points out. He also notes, however, that
Equation 39 is not necessarily the most efficient algorithm for comput-
ing F and U2

In most of these examples the problem of identification was
ignored. It should be clear, however, that it may be the more difficult
one, in a given context. Once the formal derivative 6f/dX has been
found one deals with an algebraic problem of isolating X. This problem
will not always have an easy solution so that iteration may become
imperative. An algebraic solution, though, is much to be preferred,
when it exists. It is contended that the search for such a solution is
facilitated by having the conditions stated in matrix form, which is the
primary purpose of formal matrix differentiation.

Appendix
A Summary of Some Results in Formal Matrix Differentiation

1. Specific Results:

(F11) otrA/eX = 0, A, B, constants
X, U, V, W, dependent variables
Y independent variable
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(F12) strAX/oX = A’

(F13) otrX’'AX/0X = (A + ANX

(F14) otrX'AXB/6X = AXB + A'XB’
(F15) atrY YoX = —atr¥Y 2Y/aX
(F16) otrY A = —atr(Y 'AY 1. Y/eX

2. General Rules for Obtaining other Derivatives:

(F21) aflaX’ = (aflaX)’ Transposition of independent
variable
(F22) atrUVW/eX = atrWUV/6X Invariance under cyclic
= gtrVWU/3X permutation
(F23) otrY/0X' = otrY/oX Invariance under transposition
of dependent variable
(F24) atrUV/eX = otrU V/ieX Product rule

+ atrUV /8X
where a matrix carrying the subscript “c” is to be regarded as a constant for further
differentiation.
3. Restraints on the Independent Matrix Variable X:
X = X": include
(F25) trUX —X'),

where U in an (unknown) matrix of Lagrange multipliers, differentiate and solve for U
and X (see F28 below).

X = diagonal:
(F26) otrY/oX = diagonal {9trY/éW}, where W is unrestricted.
X = xl = scalax:

(F27) atrY/aX = tr{otrY/oW}

where W is unrestricted.

4. Side Conditions:

To maximize f so that A(X) = 0 differentiate

(F28) g =f+ trU'A

with respect to X and solve for X and the matrix of Lagrange multipliers U.

5. Determinants:
(F29) 8IY1/6X = atrQ, Y/9X, where @ = IY1Y !
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