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Abstract. Convolutions * and correlations # in spaces
H of doubly infinite sequences are related by
a4 b=S(a* Sh), where S is an involution which reflects
the order in the integral domain Z on which the
sequences are defined. This relation can be used to
represent a nomn-associative correlation algebra
(H,#> by an associative convolution algebra
equipped with the involution S which, as is shown,
greatly simplifies derivations. Related matrix repre-
sentations of #, *, S are given for sequences with finite
support in Re”. Some implications for holographic
memory models are discussed.

1 Introduction and Definitions

After a long period of neglect, the so-called “holo-
graphic memory models” are now actively discussed in
the psychological literature (e.g., Murdock 1982;
Metcalfe-Eich 1982). These models rest on a convolu-
tion/correlation paradigm which, though well-known
to physicists and communication engineers, is rela-
tively new to social scientists. In this paper, some of the
basic definitions of the convolution and correlation
operation are reviewed. It is shown that some of the
algebraic complications induced by the non-
commutative and non-associative correlation oper-
ation can be eliminated by introducing a simple
involution. It is also shown that in the finite case
convolutions and correlations can be computed as
standard matrix products. Finally, it is noted that the
limitation to finite feature vectors weakens the intuitive
appeal of such memory models because they imply that
the memory task becomes more difficult as the stimuli
become simpler and more structured and that perfect
recall is only possible for cues with exactly one non-
zero feature. These difficulties can be circumvented by
replacing correlation with another retrieval mecha-

nism. We begin with a review of the basic definitions
needed for a cogent discussion of ho;ilographic
memories:

An (anchored ) doubly infinite real sequence, {y,}, is
a map from the integers Z to the real numbers Re with
typical image

J. (1.1)

The set of all such sequences will be denoted “H”. Any
finite sequence, e.g, a finite-dimensional vector
yeRe?*1,

e i={ s Yo es Vor vos Vo -

Y =00 Y150 ¥p) (1.2)

can always be interpreted as an element of H for which
y, is identically O for k<0 and k> p, since then the map

m:Re?*1 > H:
myo, .0 ¥p) =(..,0,0,y0, ..., 0,0,...)

is 1:1. In this case we will say “{y,} in H lhas finite
support of order p+1” or, “the doubly infinite se-
quence {y,} has finite support y in Re?**”. In applica-
tions to memory models one often works with finite
sequences of the type

Z:=(Z_ e Z0p+rrr Z) EREZ™ T 1.4
0

(1.3)

i.e., with elements of H with finite support of odd order
2m+ 1. Note that (1.3) is simply a special case of (1.4).

In practice, the injection m of Re” into Hz amounts
to appending as many zeros as necessary to| the finite
sequence to perform the computations in| H. After
dropping the appropriate number of leading and
trailing zeros, the result can be retrieved as an element
of Re? (with g+n, in general). Since most sequences
arising in experimental psychology are lilq%:ly to be
finite, this case will be emphasized. The injection m will
be used when convenient to go from Re” to H and back.
The restriction to sequences with finite support avoids
problems of convergence. Finite vectors in Re” will be
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underlined and treated as column vectors if they are
not followed by a transposition sign ().

Under the usual definitions of vector addition and
scalar multiplication over Re,

S H: )+ {mh = (b e, (1.52)
:RexH—H:s{y}={sy} (1.5b)

the algebraic system (H,Re, +, - > becomes a vector
space. Ifit can be equipped with a bilinear “multiplica-
tion” © for the vector elements, it becomes an algebra.
A familiar example is the algebra (Re?*?, Re, +, -, 0),
where O denotes matrix multiplication. However, in
general, © need not be associative.

The maps

B:H-H:B{y}={yi-1}
and (1.6)
F:H-H:F{y}="{yi+1}

are called “backward shifts” and “forward shifts” in the
time series literature. Since both maps preserve linear
combinations in H, B, and F are linear maps. They are
also bijective since F is the inverse of B. On applying
either map, e.g., B, m times in succession, one obtains
B™{y,}={yx—m}. B™ and F™ can be interpreted as
translations. B™ translates the origin backward m steps
and F™ translates it forward m steps (see Fig. 1).

The map

S:H-H:S{y}={y-s} (1.7

is also a linear bijection. Since $? =1 (the identity map),
but S=1, it is an involution in H. The effect of S is to
reverse the order of the elements of {y,} (see again
Fig. 1).

Convolution * is a binary operation in H defined by
#H? > H e {x)* {y} ={Zxy—i} = {2} » (1.8)

where the subscripts i, k range from — oo to oo. This
operation only exists for all pairs if H is suitably
restricted to ensure convergence of the infinite sum.
For sequences with finite support * always exists. The
definition implies that * is commutative and associa-
tive, and that it has a two-sided identity, given by

{u,} with wuy=1u,=0 for k=*0. (1.9
Correlation # is a binary operation in H defined by
¥ H - H:{x} #{y) = {2l =1z, (1.10)

where the subscripts i, k range from — oo to oo. This
definition implies that # is neither commutative nor
associative, and that it has only a left-sided, but no
right-sided identity. The left-sided identity, u,, is again
given by (1.9). Note that the definitions of *, 4, and u
refer to H, not Re".

k 3 -2 -1 0 1 2 3 4 5 6
x' Xg X) Xy X3 X,
(%)} oo 00 0 xy x; xp x9 x; 0] 0.

| I
(yed =Blx) ... 0 0 0]0 x5 % x5 x3 %4/ 0.
lzp) =Fix) ... 0 0 x5 %3 %) X3 %, 0 0 0...
(i) = F2xg) .. 0 x5 % Xy X3 %, O 0 0 0 ...
{wy ) ve 0 w,How Wy W w, 0 0O 0 O...
5wy} oo 0wy Wy wg Wy w,e O 0 0 O...

Fig. 1. Embedding of finite sequences in H, shifts and involution.
(The boxed portion shows the transpose of a coeffient matrix [a]
used in the matrix representation of a * b)

2 Relations Between *, 3, and S

The definitions of * and # in (1.8) and (1.10) imply that
these operations relate to each other via the involution
S in (1.7):

a#b=_S(a*Sb). 2.1
Proof. a*Sb:={Zab; .} =S(a#b), S*=1I.

The same reasoning shows:

SaxSb=S(axb), (2.2)

i.e. the involution § can be factored out of a
convolution.

Proof. Sa*Sb={Za_pb;,_,}={Z;a}b_,_;} =:S(ax*Db).

Notational note: Sa:=S(a). Parenthesis must be re-
tained for S(a*b) and S(a#b). _
Similarly, S can be factored out of a correlation:

Sa#Sb=S(a#b). 2.3)

Proof. Sa4Sb=S(Sa+*b)=axSb=S(a#Db), by (2.1),
(2.2).

The expression for # in terms of * and S can now be
further simplified:

ax#b=bx*Sa. (2.4

which is also computationally more efficient than (2.1).
Professor Drazin pointed out that (2.4) implies
Sa=a#u. .

Proof. adkb=S(axSb)=b* Sa, by (2.1), (2.2).
Together with the basic properties of * and S:
S’=Iaxb=b*a,ax(b*c)=(a*b)xc=axb*c,(2.5)

Eq. (2.1), (2.2) can be used to derive numerous other
relations between #, *, and S.
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Table 1. Cayley tables for = and 4 in (H, #,*,5) (row element first factor)

* a b Sa Sb #* a b Sa Sh

a axa axb a#a b¥a a a#a a#b S(a*a) uS(b*a)
b axb bxb a#b bi#b b bia b#b S(b*a) S(b*b)
Sa a¥a a#b S(a*a) S(a*b) Sa axa axb aa b¥a
Sb b¥a b#b NCED)] S(b+b) hY/ bsa bxb a#%b . b#b

(ao)#b=(b#c)fa=(cka)xb=(cH#b)xa=cH(a*b)

In particular, these identities can be used to reduce
any expression f(a, ...,z; *, #, S) containing #, *, and
S to a “convolution normal form”

fla,....z; %, #,8)=S"Dgx .. % S5z k(x)e {0,1} (2.6)

which is free of the non-associative #. This canonical
form provides a quick and mechanical check of the
identity of two expressions in #, *,and S. For example,

(a¥c)#b=S[{a4c)*Sb]=S[S(a*Sc)* Sh] =

=a*bx*Sc. (2.7a)
Similarly,
c#(axb)y=Sc*(axb)=a*xbx*Sc, (2.7b)
(c#a)x*b=(Scxa)xb=axbxSc, (2.7¢c)
(c#b)*a=(Scxb)*a=a*bxSc, (2.7d)

(b#c)¥a=(Sb*c)#a=S(Sh*c)*a=ax*b*Sc. (2.7¢)

Hence,

(a¥c)#b=(b#c)#a=(c#*a)*b=(cb)*a
=c#(a*b). (2.8)

This set of identities is basic for holographic memory

theory.

Cayley tables for other products involving #, #,
and S are given in Table 1.

3 Matrix Representation of #, *, and S

For sequences with finite support in Re” the involution
S can be represented by an n x n matrix S of the form

(3.1)
=0 elsewhere,

ie. S is a square matrix with ones in the counter
diagonal and zeros elsewhere.

The finite support of a convolution of two se-
quences with finite support, €.g., a*b with acRe?*1,
beRe?*?, can be computed as a matrix product of the
form [a]b or, alternatively, of the form [b]a. This
follows on expressing a*b as a polynomial in the
backward shift operator B( ) with weights b;:

a*b=b*a={Za,_b;}=(Z;B(a)b,). (3.2)

T

To obtain a rectangular coefficient matrix [a], leading
and trailing zeros are needed. Their use is justified by
embedding the B(x) in H. We can then construct a
coefficient matrix [a] in terms of the backward shift
operator B( ) as follows:

[a]l:=(a, B(a),..., BYa)), (3.3)

where the first column a of the coefficient matrix [a] is
the column vector a augmented by q trailing zeros, B(a)
a column vector of one leading zero followed by a and
q— 1 trailing zeros, etc., and BYa) is a column vector of
q leading zeros followed by a. The transposeé of such a
coefficient matrix is outlined as a box in Fig. 1. The
resulting matrix [a] is of order (p+ ¢+ 1) x(g —’— 1).Itcan
be used to compute the convolution a b as a standard
matrix product

_ axb=[a]b. (3.4)

To illustrate this, leta’:=(1 3 5)and b":=(1 2). Then
1 0 1

31 1 5
53 <2>= 11 33
05 10

(aB(a))b=ax*b=c.

The boldface components are the anchors jag, by, ¢,
needed to reembed cin H, if desired. The definition (1.8)
implies that z is the term containing the pro»ﬂiuct Xo Yo
There are, of course, other devices for regresenting
convolutions in terms of matrices (see, e.g., Borsellino
and Poggio 1973; Metcalfe Eich 1982, p. g660). The
representation suggested here illuminates the connec-
tion between convolution and backward shifts and has
a number of immediate implications:

(i) Ifa+0 and a*x=c is consistent (i.c., has at least
one solution), then the solution

x=[a]"¢ (3.6)

is unique (where [a]* :=([a]'[a])” ![a] is the Moore-
Penrose inverse of [a] in (3.5)).

Proof. If a+0, [a] has full column irank by
construction.
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This means one can always deconvolve a “memory
trace” a * b for b exactly, if a, ¢ are given, and suggests
an alternative to correlations for deconvolving mem-
ory traces a * b (see Sect. 5).

Hence, by commutativity of #:

(ii) For sequences of finite support, * is left and right
cancellable.

Thus there are no null-divisors in H restricted to
sequences with finite support.

We now ask under which conditions a*b=c is
consistent. In view of the matrix representation (3.5),
well-known results from linear algebra (see, e.g., Ben-
Israel and Greville 1974) imply:

(iii) For sequences with finite support, a*x=c is
consistent iff[a][a]* c=c.

Although the equation a * x=c¢ need not be con-
sistent in general (consider a=0=c), we always can
solve it in a least squares sense with the expression
given in (3.6):

(iv) If a*b=ec is not consistent then
=[b]*c and b=[a]*c (3.7

are least squares estimates of a, b, respectively.

It should be noted that the fact that [a]™ always
exists does not mean that a* always exists in H
restricted to finite sequences. On the contrary:

(v) If H is restricted to finite sequences with maximal
support n, then the semigroup <{H, *) is not regular.

Proof. A semigroup is called “regular” if every element
a has a generalized inverse a~ which satisfies
a*a” *a=a. In view of the associativity and commu-
tativity of  in H, this is equivalent to the existence of x
in (a*a)* x=aq, i.e,, to the consistency of the matrix
equation [a *a]x=a. On choosing, e.g.,a’=(1 1), one
finds that this equation need not be consistent.

Hence as long as H is restricted to sequences of
finite support n, a need not have a generalized convo-
lution inverse, let alone a regular convolution inverse.
This is relevant for holographic memory models
defined on finite feature spaces because in general it
rules out exact deconvolution of the basic identity (2.8)
via correlations (see Sect. 5).

We now turn to correlations. Equations (2.4), (3.4)
imply that the finite support of a correlation of two
finite sequences, e.g., a#b with acRe?*!, beRe?" !,
can be computed as

asb=[b]Sa. (3.8)
The coefficient matrix is the same as (3.3) for comput-
ing the convolution of a with b in the order b * a. The
vector a is postmultiplied by an involution matrix of

order p+1. To illustrate this numencally with
a:=(13 Sand b:=(1 2):

100 10 0, 5

210 q 1 ; 1210 ; |13
0 21 . s 1o 21 Jl 17

0 0 2 00 2/ 2
(b, B(b), B*(b))Sa=[b]Sa=a#b. ‘ 3.9)
Analogous to (3.6) one finds: |

If asb=c is consistent, then the solu‘hﬁons

a=S,[b]*S,c and b=S,[a]"*S,c I (3.10)

are unique.

Proof. For the left factor, the argument is identical to
that given for convolutions, with (3.7) repliacing (3.4).
For the right factor, one has a#b=c < b#a
=$,c < [a](S,b)=S,c. Note that the orders of the
two involution matrices S;, S, are different.

Since the results for consistency and least squares
solutions of equatlons involving # are direct anal-
ogues to those for * in view of (2.4), they are omitted.

4 Geometric Interpretation of S as a Reflection in H

As long H is restricted to sequences of maximal finite
support n, it can always be equipped with the natural
scalar product a’b. Relative to this scalar product the
involution S is an 1sometry, since S'S=1. Since the
determinant of S is —1, it is a reflection inian (n—1)-
dimensional hyperplane in Re".

A sequence v in H is called “even” 11';1t satisfies
Sv=v. A sequence w is called “odd” if it satisfies
Sw= —w. The orthogonal projector associdted with S,

P:=(+5)2 @
maps all vectors in Re” into even vectors,
vi=Py=(n+y-0/2), @

i.e.,into the subspace E : = {v|Sv=v}, which is invariant
under P. Since S and hence P are symmetﬂc P is the
orthogonal projection into E. The complementary
projector ‘

Q:=I-P=(I-95)/2 4.3)
maps any y into an odd vector,

w:=0y=((n—y-4/2), “4)
so that Q is the orthogonal projector for the comple-
mentary subspace E° of all odd vectors, {WISW— —w}

in Re". Hence all sequences in H with finite support can
be expressed uniquely as sums of pairwise orthogonal
even and odd vectors. Orthogonality of v, w also
follows from vw=(VS)w= —vw = 2V w0

h



As Borsellino and Poggio (1973) note, the defi-
nition of E implies

InE:={v|Sv=v},a%b=axb. (4.5)
Proof. asb=b+*Sa=b=*a.

Hence, if one restricts memory models to E, then
correlations become superfluous, because they can
always be replaced by convolutions, without having to
worry about the involution S.

However, this convenience has its price in terms of
redundancy, because one finds from the traces of the
projectors for the dimensions of the two complemen-
tary subspaces E, of even vectors, and E°, of odd
vectors, depending on whether # is odd or even,

dim(E)=dim(E)=m
dim(Ey=m+1, dim(E)=m.

if n=2m:

4.6
if n=2m+1: (4.6)

The reason for the difference in dimensions when
n=odd is that wy=0 for all vectors w in E, by (4.4).

Equation (4.5) also implies that {E,* S) and
(E 4,8> are subalgebras of (Re”*S)> and
(Re", #, 8>, since E is closed both under # and #. On
the other hand, E° is not closed under either operation.

5 A;plications to Holographic Memory Models

Holographic memory models have been studied for
some time, mostly in Europe. Almost 30 years ago
Reichardt (1957) suggested already autocorrelations as
a “functional principle of the CNS” (title of his paper).
Gabor himself, the inventor of the holography prin-
ciple, has commented repeatedly on the analogy of this
paradigm with distributed memory storage and recall
(e.g., Gabor 1948, 1968, 1969). In the 60’s, a number of
authors have proposed and evaluated memory para-
digms based on the convolution/correlation principle,
among them Julesz and Pennington (1965), Longuet-
Higgins (1968), Willshaw and Longuet-Higgins (1969),
van Heerden (1963) and others. An excellent review of
this early literature is given by Willshaw (1981).
Until very recently, this early work had virtually no
impact on psychology. For example Murdock’s (1974)
authoritative review of the memory literature which
covers nearly 900 titles does not mention any one of the
above references. Yet some of the earlier work on
holographic memory models contains valuable lessons
which perhaps should not be entirely ignored. For
example, Willshaw, one of the early contributors, after
reviewing the relevant literature in considerable detail
and comparing the holographic memory paradigm
with the matrix paradigm, arrives at a more sobering
outlook on the prospects for the correlation/convo-
lution paradigm to serve as a building block of a viable
theory of human memory than some of the more recent

3N

holography converts: “As far as biological applica-
tions are concerned, instead of treating biological
patterns as strings of random digits it would,be worth
investigating their structure, that is, the logical rela-
tions between their component parts” (Willshaw
1981, p. 103).

Stripped to basics, holographic memory models
require at least four assumptions:
(i) theitems (“stimuli”) can be represented lby “feature
vectors” in an n-dimensional real space, i.¢., by ele-
ments from Re". |
(ii) these feature vectors are “noiselike” in a sense yet
to be rendered precise,
(iii) during the learning phase, when subjects are
presented with palrs of items, a, b, with associated
feature vectors a, b, a “memory trace” is formed which
consists of the convolution a*b of the two feature
vectors, and
(iv) at the time of recall, when a third itém ¢ with
feature vector ceRe" is presented as a “cue” (or
“probe”), recall of a learned item consists of the
correlation of the cue with the memory trace a * b. Cue
¢ need not be different from a or b. Thus, schematlcally

Learning. Presenting items with feature Veptors a,b
—memory trace =a*b

Recall. Presenting cue with feature vect01 c—»recall
=c#(ax*h).

Under these assumption, by (2.8), recall reduces to
recall with cue c=(c#a)*b=(c#b)*a. (5.1)

This paradlgm is motlvated by the expectatlon that the
expression in (5.1) will be in some sense “similar” to the
feature vector of one of the learned items, a, b, which is
thus “recalled”, though perhaps imperfectly. While this
expectation is justified in optics where the s o‘tlmuh are
complex waves, it may be more problematic in psycho-
logy, because Eq. (5.1) only works when aLSSumptlon
(ii ) is met. Otherwise the recalled feature vector 4 need
not bear much resemblance to the stimulus vector a
even when the cue c¢ is identical to b.
To see this, let

b'=c¢'=(0.3 0.7 0.7 0.3), (5.2)
so that ‘
b#b =(0.09 0.42 091 1.16 0.91 0.42 0.09), (5.3)

which is far from a delta function u. Hencerecall of a
learned stimulus

a'=(03 —0.7 0.7 —0.3) ' (5.4)

is

4'=(0.027 0.063 0.042 —0.022 —0.028 0.028 0.022
—0.042 —0.063 —0.027) (5.5)
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which has only cosine 0.194 with a, even though cue ¢
coincides with b in this case.

Assumption (i) is equivalent to requiring that one
of the correlations, c#a or c#b, is “close” in some
sense to the convolution identity u in (1.9) to retrieve
one of the learned items a or b. In the simplest case,
when the cue is identical to one of the learned items
(c=a or c=D), this means all autocorrelations r, (the
components of a 4 a, b # b) must be close to zero except
Fo- /
Borsellino and Poggio (1973) call vectors with the
property
x#Ex=u< x*Sx=u (5.6)

“noiselike”. They argue this assumption is usually met
for complex stimuli: “All complicated patterns (prac-
tical examples are printed letters or ground glass
surfaces and impulse sequences which are coded with
pseudorandom shift register codes) are, in first approx-
imation, noiselike functions” (p. 117). An analogous
assumption is also needed for the matrix models,
namely that the signal vectors are orthogonal, so as to
suppress “cross-talk” (c.g., Kohonen et al. 1981,
p. 117f).

To avoid confusion with other, only approximately
noiselike vectors, we shall call vectors with property
(5.6) “perfectly noiselike”. Similarly, we shall say “item
a is perfectly recalled by cue ¢” if c#(a*b)=a. If b is
perfectly noiselike in the sense of (5.6), and used as a cue
to recall a, (5.1) reduces to

recall with cue b=(b#b)*a=u*a=a, (5.7

so that, in this case, item a is perfectly recalled.

We now inquire how many perfectly noiselike cues
are contained in Re” To this end, one has to solve
x#x=x*Sx=n, ie. the matrix equation [x]Sx=u
with x in Re” and u of the form (1.9) in Re*"*!. One
finds that the seemingly innocuous transition from the
infinite-dimensional wave spaces of physics to the
finite-dimensional feature spaces of psychology has a
drastic implication:

The basic convolution/correlation paradigm rules
out perfect recall for the overwhelming majority of
finite feature vectors by restricting it to cues with only
one nonzero feature.

Proof. Let there be n+ 1 features, and consider the first
n rows of x4 x, which must be zero:

Xo Xn

X X Xy —
1 0 n—1 =q). (58)

Xp-1 %o O Xo

If x, =0, the first n columns of the coefficient matrix are
linearly independent so that, on dropping the last

column of the coefficient matrix, the remaining so-
lution vector must be zero, ie., x§j+0=x,
=x,=...x,=0. On the other hand, if x, =0, and x, is
non-zero, one obtains a reduced full column rank
system by striking out the last two columns of the
above coefficient matrix, etc.

While in practice one may not 1ns1st on perfect
recall requiring perfectly noiselike cues, the fact that
such models imply quite generally that recall deterio-
rates as the stimuli become s1mp1er and more clearly
structured —i.¢., less noiselike — is counterintuitive and
would have to be dealt with in some Way One
poss1b1hty has been suggested by Bors.ellrno and
Poggio: “In order to implement an associative memory
in a convolution-correlation structure, it seems neces-
sary to induce a suitable isomorphism between the
signal space and a noiselike set. That means some
“noisecoding” of the input signals which have to be
mapped into random or pseudorandom sequences”.

Even after the stimuli have been “complexified” in
some way, effective retrieval further requires that the
dimension of the feature space be large. For most of the
complicated patterns cited by Borsellino ahd Poggio,
with the possible exception of printed letters, this
requirement seems to be met. Similarly, Kohonen
(1984), in his simulations with photographs of human
faces, employs feature spaces with dimension n on the
order of 3000. As he demonstrates, under these con-
ditions the performance of his matrix model can be
quite impressive.

However, it is less obvious why the stimuli of a
paired associate learning task of nonsense syllables, for
example, should require feature spaces of 3000 dimen-
sions. All this underscores the need to follow up on
Borsellino and Poggio’s suggestion to explicate the
transformation which maps the actuoal stimuli into the
required noiselike feature space if one wants'to convert
the holography paradigm into a psychological
“theory” or “model” of distributed memoriy.

|

6 A Revised Associative Recall Mechanisnr}

A second problem which weakens the intuitive appeal
of holographic memory models is the convolution/
correlation paradigm itself. As Pike (1985), among
others, has pointed out, from a psychologi¢al point of
view the storage by * and the retrieval through #
appears to be no less ad hoc than the noiselike nature
of the feature space. This criticism could be'blunted by
invoking Eq. (2.1) which permits replacement of two
implausible operations, *, #, by one implausible
operation * and a less implausible map, S!

On the other hand, since the assuniption that
retrieval is accomplished through correlation is en-
tirely ad hoc in the first place, and entails the|counterin-



tuitive prediction that recall becomes more difficult as
the stimuli become simpler and more clearly struc-
tured, a preferable alternative might be to discard the
correlation altogether and to replace it with the
Moore-Penrose solution (3.6) as a retrieval mechanism
for deconvolving the memory trace a * b. For example,
when c is “similar” to a which was paired with b during
the learning phase, giving rise to the memory trace
a*b, then

b=[c]"(a*h) (6.1
will be the recall of b with cue ¢. In particular, for c=a:
b=[a]"(axbh). (6.2)

In this case, b will be perfectly recalled because a*b=c
is consistent. For all other cues ¢ recall gives a least
squares approximation (3.7). The solution vector b
could be compared with the feature vectors b in
numerous ways, e.g., in terms of the normalized scalar
product.

Since this revised retrieval scheme no longer re-
quires that the feature vectors be noiselike, it dispenses
with the need to justify an intervening random map
between the actual features of the stimuli and their
representations in the storage paradigm. Instead of
charging randomness with the unaccustomed task of
inducing structure and enhancing discrimination, ran-
dom vectors e, d can now be introduced in their more
traditional role as perturbations which dilute recall at
the initial stages of learning. This can be done by
entering a+e and b+d into the convolution. At the
k’th trial the increment added into the stored memory
trace will be

(a+e)*(b+d)=a*b+e*b+d xate xd,, (6.3)

in view of the bilinearity of =. This yields a simple
associative learning/memory paradigm with (6.3) as
the learning stage and

recall=[¢] " {Z(a+e) *(b+ dk)/ﬁ} (6.4)

instead of (5.1) as the recall stage after n learning trials.
In particular, if a is used as a cue to recall b after n trials,
recall will equal

recall=b=[a]" Z,(a+ey) *(b+d,)/n
=b+2,axd,/n+Z.bxe/n+2. e xd;/n. (6.5)

As n increases, the approximation to b tends to
improve because the three error terms approach zero.
Thus, on repeatedly pairing the same stimuli g, b, recall
will improve with the number of learning trials as long
as the cue is similar to one of the two learned items. The
learning rate can be controlled through the variances
of the random components ¢; d;. For example, to
render the paradigm more realistic, the error variances
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could be made a function of the number of features, so
that learning slows down and recall becomes more
difficult as the stimuli become more complex, rather
than the other way around, as the conventional
correlation/convolution paradigm implies.

The revised paradigm (6.3), (6.4) is not offered as
one more “theory” of distributed memory, because in
terms of neurology it is just as unmotivated and
implausible as the conventional convolution/correla-
tion paradigm. However, compared to the latter, the
revision does have a number formal points iniits favor:

(a) It naturally combines with a simple:@ learning
paradigm which represents learning as successive
extinction of random noise in the associations, rather
than requiring that a separate adaptive mechanism be
grafted on the storage/recall paradigm.

(b) There is no need to assume that the feature spaces
from which a and b are selected are noiselike.

(c¢) There is no restriction that the cues required for
perfect recall lie in selected subspaces. |

(d) Thereisno requirement that the dimensions of the
feature spaces be large. ‘

(e) The paradigm applies to the feature vectors of the
stimuli directly, instead of requiring an imfervening
transformation. ,

(f) On suitable choice of var(e) and var(d), recall
becomes easier, not more difficult, with simplér stimuli.
(g) It narrows the gap between holographic and
matrix models, especially those developed by Koho-
nen, who also employs Moore-Penrose inverses and
the associated projectors.

7 Related Work

Finally, I wish to acknowledge my debt to Borsellino
and Poggio’s (1973) paper on the formal aspécts of the
convolution/correlation paradigm. In this important
paper, the authors relate earlier results on non-
associative algebras by Albert (1942) to holographic
memories. Most of the results stated here are already
latent in the papers by Albert, and Borsellino and
Poggio. However, the present focus is diffsrent and
more specific. While Borsellino and Poggio did note
the “isotopy” (a kind of weak equivalence between
(H, %> and (H,*) which in effect involves the invo-
lution we denoted S), they did not give any identities
which would permit the resolution of expressions
involving correlations into products of convolutions
and involutions, as was done here. The authors also
employed a different matrix representation, which is
due to Albert. The representation suggested here
capitalizes on the relation between between the shift
operators and # and * and lends itself to convenient
computations of correlations as standard matrix pro-
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ducts. This convenience has been achieved at the
expense of limiting all computations to sequences with
finite support in Re™.
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