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Abstract

it is shown that the genetic model Jinks and Fulker (1970) fitted to the Shields’
(1962) twin data is qualitatively inconsistent with systematic trends in these data
and, as a result, produces an inordinately large proportion of negative variance
estimates. In contrast, a purely environmental model yields qualitative predictions
consistent with the Shields data and admissible parameter estimates throughout.
Quantitatively, it fits the Shields data twice as well as Jinks and Fulker’s genetic
model. Hence their farreaching conclusions are not supported by the Shields data.
This reevaluation illustrates that purely descriptive models, even if they were used
with circumspection, remain intrinsically inconclusive about nature/nurture
questions because the possibility can never be ruled out that other models may fit
the same data even better.
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1. INTRODUCTION

Ever since Galton (1883), studies of identical twins have been considered
“the most available materials for a scientific examination of the role of nature
versus nurture in human psychology" (Morgan, 1929, p- 35). The still widely
held belief that many mental traits, including "intelligence”, are inherited to a
considerable degree (until quite recently, the figure was 80%), can be traced in
large part to twin studies. These conclusions should not be taken lightly:
Between 1921 and 1964, 33,374 US citizens were sterilized on the grounds that
they were "mentally retarded", that 1s, because they scored below 70 on so-
called "intelligence "tests" (Robitscher, 1973, p. 123).

Compared with the scope of its social and ethical implications, the empir-
ical basis for twin research on mental abilities to this day is actually quite
narrow, because "twins are uncommon, and monozygotic twins who have been
separated from one another in early childhood are of great rarity" (Slater, in
Shields, 1962, p. vii). In an effort to broaden this base, Shields appealed in the
late 50’s in a BBC television program for volunteers among monozygotic and
dizygotic twins to submit to a series of mental tests. He published his results in
Shields (1962). Since its publication, this study has occupied a pivotal position
in the still ongoing debate about the degree of inheritance of mental traits. The
Shields data have been analyzed and reanalyzed by numerous other investi-
gators, including Jinks and Fulker (1970) and, more recently, Farber (1981).

This particular data set acquired still more empirical weight when Kamin
(1974) discovered that almost half of the available data base of monozygotic
twins raised apart (MZAs), the 53 pairs reported by Burt, had to be discounted
as untrustworthy. Prior to this discovery, the Shields data contributed 44/137
pairs (= 32%) to this data base, thereafter more than half (44/84 pairs = 52%).

Shields recorded the values of various physical and four psychological
variables: "After discussion with Professor Eysenck it was decided to use the
Dominoes Intelligence Test and the Synonyms section (Set A) of the Mill Hill
Vocabulary Scale (Form B, 1948)" (Shields, 1962, p- 58) as the two cognitive
variables. Two personality variables were derived from a "Self-Rating Question-
naire (SRQ) ... especially designed for us by Professor H. J. Eysenck ... so as to
yield the greatest amount of information compatible with its shortness" (ibid, p.
65). This questionnaire consisted of 38 items. "Twenty-two items contribute to a
score for extraversion and twenty-two items towards a score for neuroticism, six
of the items being common to both dimensions" (ibid, p. 66). Shields’ sample
comprised 44 pairs of monozygotic twins raised apart (MZAs), 44 pairs of
monozygotic twins raised together (MZTs), and 32 pairs of dizygotic twins
raised together (DZTs). ‘
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In his (1962) book, Shields presented these data in considerable detail.
After analyzing them in various ways, he stated his final conclusions with note-
worthy caution: "The above discussion of genetical and environmental causes of
variation has suggested that on both sides these are multiple and interacting ...
The existence of twins who are alike in all their genes has nevertheless enabled
us, by means of appropriate comparisons, to demonstrate something of the
importance of heredity for a wide variety of personal characteristics. The very
fact that such twins differ, sometimes extensively, is of itself evidence of non-
genetical effects. To some it may come as a surprise that twins brought up
together differ so much." (loc. cit., p. 156).

In contrast, when Jinks and Fulker announced their results of a reanalysis
of these data in Jinks and Fulker (1970), they were much more specific in their
conclusions than Shields had been:

(a) The authors claimed to have resolved the nagging problem of genetic-
environmental interactions, and of correlated environments of MZAs which, if
present, would invalidate any inferences about the presumed heritability of
psychological traits: "... the inheritance of most of the psychological measures
reanalyzed conform to a simple model. In view of pessimism, over the possible
influence of correlated environments and genotype-environment interactions ...
it is reassuring to find that they are by no means universal phenomena" (p. 347);

(b) They claimed to have established uniformly "high heritabilities recorded -
in Table 30" (p. 347) for the four measures employed by Shields;

(¢) They claimed that, "For the section Neuroticism, assortative mating was
indicated and only additive gene action" (p. 348);

(d) and, further, that "IQ showed strong directional dominance for high
expression” (p. 348); _

(e) Inspite of the small sample sizes and the abbreviated tests, the authors
claimed to be able to estimate the number of genes controlling IQ: "the high
number of genes estimated to be controlling IQ (>20 and approximately 100)
fully confirms that this trait is under polygenic control” (p. 348).

This study has attracted considerable attention. The reactions of psycholo-
gists ranged from favorable to enthusiastic:

Loehlin, Lindzey, and Spuhler (1975, p. 289): "For more sophisticated
methods of heritability coefficients and variance components, the reader is
referred to Jinks and Fulker (1970)".

Jensen (1980, p. 184): "Genetical models that are based on general prin-
ciples of genetics and are applicable to metric traits in all plants and animals fit
the various kinship correlations for IQ remarkably well (Jensen, 1973a; Jinks &
Fulker, 1970)".

Eysenck (1973, p. 262): "The Jinks and Fulker paper ... is the cornerstone
on which any future argument about heritability must be based".
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By comparison, geneticists were more reserved:

Vetta and Hirsch questioned claim (a) that genotype does not interact with
environment, on technical grounds: "Analysis of this work by Dr. Vetta revealed
a mistake in the algebra on p. 314 of the Jinks and Fulker article. ... Even
though Professor Jinks accepted Dr. Vetta’s correction of his algebraic error,
Richard Hernstein, editor of the psychology journal in which it appeared, re-
fused to allow Dr. Vetta to publish his correction.” (Hirsch, 1981, p. 23, see also
Hirsch, 1990).

King (1981) expressed some doubts about the precision of the numerical
estimates Jinks and Fulker had reported, usually to four decimal places for
samples ranging from 11 to 29 pairs: "One cannot help wondering whether the
claims to precision of the estimates turned out by the kind of ponderous statisti-
cal machinery at work in Jinks and Fulker’s 1970 paper are not spurious" (p.
86). King also drew attention to a more critical problem which will figure cen-
trally in the present paper: After comparing the heritability estimates typically
reported for mental traits (e.g., around .80 for IQ) with those found in
controlled animal experiments (e.g., milk production in cattle: .30, staple length
of wool in sheep: .25, egg production in poultry: <.50, p-79), King concluded:
"In estimating heritability of characters in domestic animals the breeders make
every effort to randomize environmental factors [while] studies of heritability of
human intelligence are probably more deficient in failing to randomize environ-
mental factors" (p. 82).

More generally, the point of the present paper is to assess the stringency of
some of the reasoning which led Jinks and Fulker to their conclusions, and also
to assess the tightness of fit of their genetic model to the Shields twin data. The
relevant subset of the Shields data is reproduced in Table 1. The sample sizes
are given by the within degrees of freedom. The between and within sums of
squares have been recomputed from the various Tables in the Jinks and Fulker
(1970) article and were checked against the total variances which the authors
also reported. Since there are not enough data for the two cognitive variables
on the dizygotic samples, the present reanalyzes will be limited to identical
twins. Since Jinks and Fulker (1970) did not report the neuroticism values for
the male MZT sample (p- 326), these values were computed directly from the
Shields (1962) report. In this connection, a minor discrepancy with the values
given by Jinks and Fulker for extraversion was found and corrected,

2. THE GENETIC MODEL BY JINKS AND FULKER

To account for the Shields data, Jinks and Fulker postulate a variance com-
ponents model which provides for four mutually uncorrelated latent variables to
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explain the observed variables y (neuroticism, extraversion, Mill Hill, and

Dominoes test). The structural part of the Jinks and Fulker model is:

TABLE 1. Between and within sum

Fulker (1970).

s of squares for the Shields data recomputed from Jinks and

Variable Sex Twin Type ~ Between/ 4 ss MS
Within

Neuroticism male together B 13 104.61 8.05

w 14 109.62 7.83

apart B 13 382.98 29.46

w 14 70.00 5.00

female  together B 28 620.48 22.16

w 29 23548 8.12

apart R 25 T28.00 2912

w 20 251.16 9.60

Extraversion male together B 13 278.96 21.46

w 14 92.25 6.59

apart B 13 293.43 22.57

w 14 50.00 3.57

female  together B 28 405.35 14.48

w 29 188.13 6.49

apart B 25 766.18 30.65

w 26 200.00 7.69

Mill Hill male together B 11 189.46 17.22

w 12 36.48 3.04

apart B 14 962.87 68.78

w 15 159.50 10.63

female  together B 23 796.67 34.64

w 24 111.00 4.63

apart B 24 1372.00 5717

w 25 178.50 7.14

Dominoes male together B 10 905.09 90.51

w 11 54.01 491

apart B 13 1423.61 109.51

w 14 270.50 1932

female  together B 2 2556.40 116.20

w 23 571.00 24.83

apart B 23 4182.67 181.86

w 24 462.00 19.25

TABLEAU 1. Sommes des carrés

et Fulker (1970).

(inter et intra) des données de Shields recalculées d’apres Jinks
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Y-H=g+gutete,
where u s the population mean of y, g a between-family genetic variable, g,
a within-family genetic variable, ey, is a between-family environmenta] variable,
ande, a within-famﬂy environmental variable, The stochastic restrictions are:
E(gb, gw, €, ew) = &, Var(gy, g., e, ew) = diagonal.

Thus, all latent variables are uncorrelated and their means are zero. Under
this model, the four latent variables make different contributions to the scores
of the MZAs, MZTs, and DZTs:

Since MZTs share the same genes, they both have the same values on the
two genetic variables g, and gw- Since they also grow up in the same environ-
ment, they have the same value on the between-family environment variable e,

"Hence MZTs differ only on the within-family environment variable ew. If one
denotes the observed score of one twin by y1, and that of the other twin by y,,

MZTS: Yi- M =8 +gutep+en (Ist twin)
Y2-4 =8 +gv+e,+ew (2nd twin),
where the variables on the right again have zero means and are mutually
uncorrelated, and var(ew) = var(eyz) = var(ey).

In contrast, monozygotic twins raised apart (MZAs) differ also on the
between-famﬂy environmental variable €, SO that their observed scores are
modelled as

MZAS: Yi- 4 =g + gu + ey + ey
Y2- =8+ gu + ep2 + ey
where the six variables on the right have zero means and are mutually up-
correlated, and now, in addition, var(epy) = var(epz) = var(ey).

For dizygotic twins raised together (DZTs), this model provides for two
different values on the within-family genetic variable gw. For dizygotic twins
raised apart (DZAs) it provides for different values on g,, ey, and e,, so that
they only share a common value on gy. Finally, for unrelated children, all four
variables are allowed to take on different values.

Intuitively, this simple model makes Some sense as a first approximation if

interpretation for the four latent variables &b, 8w, €b, €w. However, it is clear that
any measurement error must be absorbed by ey.
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3. SOME QUALITATIVE PREDICTIONS OF THE
JINKS AND FULKER MODEL

The defining assumptions of the Jinks and Fulker model imply a number of
qualitative consequences which can be checked against the data reported by
Shields.

In Appendix A1 it is shown that the conventional sums of squares between
(SSB) and sums of squares within (SSW) can be computed as half the sum of
squared row sums and half the sum of squared row differences from the Nx2
table of deviation scores around the grand mean. In Appendix A3 these results
are used to derive the expected values for these sums of squares, and hence also
for the mean squares, from the assumptions of Jinks and Fulker’s model.

In Appendix A2 it is further shown how these sums of squares relate to the
so-called intra-class correlation, a summary index of within-family, between-
twin resemblance which can be defined either in terms of sums of squares, or in
terms of mean squares. For pairs it varies between -1 and 1, as does the
ordinary correlation coefficient. It is perfectly adequate to interpret an intra-
class correlation as an ordinary (product-moment) correlation computed from a
"double entry table" which contains each score pair twice, once as (yy, y2) and
once as (ys, 1), SO as to remove the ambiguity whether a sib’s score is to be
entered on the right or left (e.g., Harris, 1913). In passing, note that it is not a
variance ratio, as is often said (e.g., Scheffe, 1959, p. 223; Winer, 1971, p. 244)
because the numerator is not a variance but a covariance, and hence can be
negative. In Appendix A3 it is shown that the genetic model proposed by Jinks
and Fulker implies, among other things,

(a) E(MSBA+MSWA) = EMSBT+ MSWT),
where E(MSBT), E(MSWT) denote the expected values of the between and
within sums of squares for the MZT’s and E(MSBA), E(MSWA) those for the
MZA’s,

(b) E(MSBA-MSWA) < E(MSBT-MSWT),
and, as a consequence,

(¢) ra-rr <0,
where ra denotes the intraclass correlation (based on mean squares) for MZAs,
and rr the intraclass correlation for MZTs.

These predictions are reasonable if one beljeves the observed scores
contain a genetic component. In this case, MZTs should be more similar than
MZAs, because the former share both the genes and a common environment,
while the latter only share the genes, but presumably are exposed to different
environments.

However, the actual data reported by Shields (see Table 1) conflict with
these predictions, as can be seen from Table 2.
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TABLE 2. Ordinal predictions of the genetic and environmental models: Observed and predicted
differences between MZAs and MZTs of mean squares and intraclass correlations.

Variable Sex (MSBA+MSWA)  (MSBA-MSWA)  ra-rr
A(MSBT+MSWT)  -(MSBT-MSWT)

Observed
Neuroticism male 18.58 24.24 .70
female 8.50 542 ‘ .04
Extraversion male -1.91 4.13 .20
female 17.37 1497 22
Mill Hill male 59.15 4397 03
female 25.04 20.02 .01
Dominoes male 33.41 4.59 -20
female 60.08 71.24 .16
Predicted
Jinks and Fulker
Genetic Model =0 <0 =<0
Environment Model >0 >0 >0

Note: If var(ep) = 0, the Jinks and Fulker Model predicts 0 for all 4 comparisons. For the observed
intraclass correlations, see Table 4.

TABLEAU 2. Prédictions ordinales des modéles génétique et comportemental : différences des
carrés moyens et des corrélations intra-classes observées et prédites entre MZA et MZT.

Specifically, the ordinal predictions (a), (b), and (c) of the genetic model

proposed by Jinks and Fulker are violated by the Shields data for prediction
(a) in7out of 8 (= 88%) cases,
(b) in 8 out of 8 (= 100%) cases, and
(c) in7outof 8 (= 88%) cases.

If, for the sake of argument, we assume approximate independence, then
the null-hypothesis that the differences in the first or second row of Table 2 are
actually zero implies that the probability of obtaining 7 out of 8 positive
differences is given by the binomial as (1+23)28 = .035 for each row, so that
the joint outcome in both rows has probability less than .001.

Prediction (a), E(MSBA+MSWA) = E(MSBT+ MSWT), assumes added
significance for Jinks and Fulker’s contention that both genotype-environment
interactions and correlated environments are negligible. Therefore, the authors
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propose to test equality (a) more stringently with an F-test based on the total
variances in the MZT and MZA groups. Strictly speaking, their model does not
predict that the two total variances are the same, but rather that the two sums
of mean squares are the same (see E(MSTA), E(MSTT) in Appendix A4). But
this is a minor point of little consequence because the degrees of freedom
within and between differ only by 1.

Much more serious is the power problem (see also Wahlsten, 1990).
According to the two equations Jinks and Fulker give at the bottom of p. 315 in
their (1970) paper, in their notation,

MZTs: 072 = gun’+ o+ owel+ 0be+2lubwe Twh 0 wet 2lonbe @ o 0 e

MZAS: 017 = 0w+ 0602+ O wel+ Tbed + 2lunwe O wh 0 we+ 2lohwe by 0 v
the two total variances they wish to compare are composites of six terms, four
postulated variances and two covariances, and differ in only one term, the
remaining five are the same for both groups. According to the authors: "Now
except under exceptional circumstances of internal balancing, these two o12’s
will not be expected to be equal unless the correlations contribute only an
insignificant amount of covariance to the respective total variances" (p. 315).

However, if one assumes for the sake of argument that all 4 postulated
variances are equal to k, and the constant correlation ryhwe = .5, then one
obtains the F-ratio

F= o2/ o= (5k+2kr;)/(5k+2kry) = (1+2r1/5)/(1+2r,/5),
which varies between 1 and 1.40 when rj > 0 and between 1 and 2.33 otherwise
as a function of the values of ry, r», which are the only two parameters left to
vary. The critical values for a .05 level test are around 3 for the smaller groups,
and around 2 for the larger, pooled groups. Hence it is virtually impossible to
reject the homoscedasticity hypothesis, even if one ignores the added complica-
tion that such a stringent alpha level used by Jinks and Fulker further increases
the risk of type II errors. For a more comprehensive discussion of the power
problem in heritability models with special attention to interaction tests, see the
recent BBS target article by Wahlsten (1990).

In any case, the consistent departures of the data from the predictions of
the genetic model proposed by Jinks and Fulker cast sufficient doubt on the
adequacy of their model that one may wish to look for alternative models which
are more compatible with the qualitative aspects of the Shields data.

4. AN ENVIRONMENTAL MODEL FOR THE SHIELDS DATA

To begin with, one may follow up on King’s suggestion and question the
assumption of uncorrelated environments for the MZAs (cov(er,ez) = 0) which
has also been troubling to other observers of the current behavior genetics
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scene. Jinks and Fulker mention this crucial assumption only in passing -- "With
only MZt and MZj, ... the genetic component can still be estimated without
bias, provided, of course, that separated twins are randomly assigned across
environments" (p. 321) -- and do not comment on its plausibility. As noted
earlier, this assumption is absolutely critical for any attempts to separate
genetic from environmental contributions to test performance. As King also
point out, it seems a rather implausible hypothesis on common-sensical grounds
alone: Of course twins are not "randomly assigned" to different environments
when they are put up for adoption. A priori it seems more reasonable to expect
that well-to-do families, if they have reason to give up a child for adoption, will
try to ensure that it is raised in roughly comparable socio-economic surround-
ings, e.g., by relatives. Less well-to-do families, in turn, will have to be satisfied
with an adopting environment similar to their own. Thus, one might postulate
an additional parameter Pele2 to account for correlated environments between
MZAs and predict that it will be positive.

However, the inclusion of such a correlation parameter would not resolve
inconsistency (a), that MSB+MSW is larger for the MZAs than the MZTs in 7
out of 8 cases, often much larger. Any change in the covariance assumptions
simply redistributes the quantity E(MSB+MSW) between the MZAs and
MZTs under the Jinks and Fulker model, but does not change the prediction of
equality between both groups.

In order to predict a larger E(MSB+MSW) for the MZAs, an additional
variable must be added to the structural equation for the MZAs which does not
show up in the structural equation for the MZTs. Let this variable be s (for
"separation variable") and assume, as a first approximation, that it takes on the
same values for both MZAs of the same family, and thus varies only between
families. A possible substantive interpretation of s might be length of separation
(see, e.g, Farber, 1981), although there may be others. Farber, in her thorough
reassessment of the quality of the extant MZA data, also noticed the "paradox
that twins with the least contact may most frequently be the most alike" (p-
254). For further empirical evidence of this thoughtprovoking finding, see
Farber (1981, p. 256, Table 10.1).

To account for the consistent finding that r4 > rr, the additional variable s
must also affect the numerator, E(MSB-MSW). To see that such a change
indeed yields the correct qualitative predictions, consider the ratio

r(x) = (a + x)/(a + b + x),a,bx > 0,
which increases with x. Concretely, if a is .1 and b = 1, then r(0) = .09 is its
value forx = 0. Ifx = 1, one hasr(1) = .52, if x = 2, r(2) = .68, ifx = 5, r(5) =
-84, and if x = 10, r(10) = .91. Thus, increasing x (concretely, var(s)) not only
increases the magnitude of the denominator but also the magnitude of the
ratio, in agreement with the data reported by Shields.
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These purely formal considerations suggest that a more adequate variance
component model for the Shields data might be
y-u=g+e+d+s,
where g denotes the genetic component, e the environmental component, d the
measurement error, and s the separation variable needed to account for
MSBA+MSWA > MSBT+MSWT and ra 2 rr, and s enters y only for the
MZAs but not for the MZTs. In response to concerns about possibly correlated
environments such a model should further include a correlation parameter peies
for the MZAs, raising the total number of parameters to be estimated from
three for the Jinks and Fulker model (var(g), var(ep), var(ew)) to five for such a
correlated environments model (var(g), var(e), var(d), var(s), cov(ejez)). To
reduce this number of parameters by one, it is proposed to eliminate var(g) and
thus to model the Shields data under the strong assumption that the observed
variables contain no genetic component at all. Thus one arrives at a 4-parame-
ter "correlated environments model” (CE4):
MZTs:y1-u =e + d;
Y2-u =e + da
MZAs:yi-u =¢e; + d; + s with cov(ey,ez)
Y2-u =€+ d2+s = peeavar(e) # 0.

On fitting this model to the sums of squares of the four data sets pooled
over sex, Le., 8 sums of squares for each of the 4 variables, all variance esti-
mates of the latent variables were positive and the following estimates for the
environments correlations for the MZAs were obtained:

Neuroticism, peiez = .91, Extraversion, pejez = .94,
Mill Hill, pele2 = .72,  Dominoes, peiez = 1.04.

This outcome suggests that the fit may deteriorate only slightly if one sets
petez = 1, to arrive at a 3-parameter correlated environments model (CE3)
which can be fitted to each sex group separately. Such a model contains the
same number of parameters as the genetic model JFG3 proposed by Jinks and
Fulker, so that the relative fit of both models can be compared in each case.

5. QUANTITATIVE COMPARISON BETWEEN THE GENETIC
AND THE CORRELATED ENVIRONMENTS MODEL

The expected between and within sums of squares predicted by the 3-
parameter Jinks and Fulker model (JFG3) are derived in Appendix 4. On fit-
ting this model to the sums of squares (Table 1) by the method of least squares,
the least squares estimates (LSEs) shown in Table 3 were obtained. These
estimates differ slightly from those reported by Jinks and Fulker, which are also
given for comparison. The discrepancies in the estimates are due to (a) some
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corrections in the observed sums of squares given by Jinks and Fulker noted
earlier, (b) erratic use of the available data base by Jinks and Fulker, who fitted
their model to various eclectic combinations of the identical twin and dizygotic
twin groups. For example, on p. 326 they discard the male MZTs for the
analysis of neuroticism, but include it again on p. 327. In contrast, the present
reanalysis is always based on the same four groups for all four variables, and (c)
a revised least squares criterion: Jinks and Fulker fitted their model to the
mean squares while the present reanalysis is based on sums of squares.

As a check on (c), the mean squares analyses were also performed for the
four pooled groups, resulting in only minor changes in the estimates, suggesting
that (b) is the main source of the numerical discrepancies in the LSEs.

More striking than the minor discrepancies in the LSEs are the consis-
tencies across the 8 within sex analyses and the 4 pooled analyses. In particular,
regardless which least squares method is used, one finds that the estimates for
the between-family environment variance component var(ey) turn out negative
with stunning regularity in all 12 cases. Jinks and Fulker cope with this
surprising finding by constructing confidence intervals around these negative
estimates. Since they always include zero, the authors conclude that var(ep) is
zero in each case. This inference can be questioned on at least five counts:

(a) Empirically: since var(ep) = 0 implies ra = rr under their model, it
conflicts with the consistent finding that ry > ry for the Shields data.

(b) Substantively: Once the problem of measurement error is taken into
account, such a finding implies that the test performance is entirely due to the
genetic component because the intraclass correlations, once corrected for
attenuation, are unity. For example, the 8 intraclass correlations for the cogni-
tive variables, the Mill Hill and the Dominoes, average in the high 70s, which
roughly equals the parallel form reliabilities of "Cattell’s Culture Fair Intel-
ligence Test" for 2 white groups of the data reported by Osborne (1980). So far
as I know, not even the most extreme hereditarians went so far as to claim that
the performance on mental tests is entirely due to genetic causes.

(c) Statistically, in terms of the everpresent power problem which, of
course, is also relevant here, given that the sample sizes are so small.

(d) Statistically, on more technical grounds: The confidence bounds based
on the t-distribution Jinks and Fulker report are invalid because they are
derived on the assumption of the fixed effects ANOVA model, not the variance
components model used by Jinks and Fulker. In the fixed effects model, the
dependent variables are assumed to be normal, and the LSEs, as linear com-
binations of them, are also normal. Hence their variances are proportional to
the diagonal elements of the inverse of X’X, (where X is the design matrix), and
the ratios of LSEs over the square roots of the product of these diagonal
elements multiplied by MSE are t. However, in the random effects model, the
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TABLE 3. Parameter estimates (LSEs) under the genetic model JFG3 and the correlated
environments model CE3.

GENETIC MODEL ENVIRONMENTAL MODEL

vﬁr(g) vﬁr(eb) vﬁr(cw) res vﬁr( e) var(d) vﬁr(s) res
Neuroticism
males SS 1189 -11.43 12.13 .09 82 6.42 10.71 .00
females SS 9.64 -2.55 9.94 01 6.68 8.81 348 .00
pooled SS 10.16 -4.27 10.26 .04 5.67 832 4.77 03
pooled MS 10.98 -7.41 11.36 .08 373 7.65 7.09 04
J&F MS 6.12 -2.06 9,02 (p- 329)
Extraversion
males SS 9.54 -2.14 6.15 .00 8.19 5.08 .56 01
females SS 11.29 -7.16 10.21 07 373 7.02 8.09 .00
pooled  SS 10.91 -6.18 945 06 4.54 6.63 6.61 02
pooled MS 10.49 -4.78 8.47 .04 5.94 6.09 4.32 03
J&F MS 10.80 247 831 (p- 333)
Mill Hilt
males SS 2829  -19.62 19.63 14 4.78 7.67 25.78 .01
females SS 24.77 -9.48 10.87 .04 14.35 5.93 11.26 .00
pooled SS 2567 -11.67 12.66 07 12.53 6.34 14.36 02
pooled MS 2705  -16.00 14.36 11 9.78 6.36 18.52 .03
J&F MS not given
Dominoes .
males SS 44.63 -.84 1434 .01 38.34 13.82 9.50 01
females SS 80.69 -34.31 39.80 02 47.14 21.92 32.83 00
pooled SS 7195 -2587 34.16 .04 45.84 20.11 26.27 03
pooled MS 6320 -18.96 26.56 .06 43.14 17.08 21.17 .05
J&F MS 59.61 -1033 2722 (p.337)

Notes: J&F = LSEs in Jinks and Fulker (1970) on page indicated. Pooled = pooled across both
sexés. SS = sums of squares solution. MS = mean squares solution. res = 1 = eta? = e’e/yy.

TABLEAU 3. Estimations des parameétres sous le modéle génétique JFG3 et le modéle
d’environnements corrélé, CE3.

dependent variables are sums of squares (or mean squares), and thus chi-
square, not normal. The exact distribution of arbitrary linear combinations of
such chi-square variates is probably rather difficult to establish (Satterthwaite,
1946), certainly it is not normal. Hence the confidence bounds Jinks and Fulker
computed around their negative variance estimates are unsound statistically
and any inferences based on them are invalid.
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(e) In terms of prior odds: As was already the case for the sums and differ-
ence of the mean squares and the intraclass correlations, one is again struck by
the consistency of these inadmissible variance estimates: the LSEs for var(ep)
are negative in all 8 of the smaller samples and all 4 pooled samples. While one
expects negative variance estimates of a zero variance half the time, it is
disturbing if such negative estimates arise in 12 out of 12 cases.

We now turn to the fit of the 3-parameter correlated environments model
(CE3). The expected sums of squares are derived in Appendix A5 and the
parameter estimates are summarized in Table 3. As can be seen, none of the
parameter estimates are inadmissible. Reliability estimates for the four depend-
ent variables are given by rr under CE3 (see Appendix AS). Although Jinks and
Fulker do not report the reliabilities of these variables, some of them can be
inferred from other data based on comparable tests. For example, Osborne
(1980) reported a wealth of data for black and white twins which include,
among other tests, Cattell’s so-called "Culture Fair Intelligence Test". This test
is very similar to the Dominoes used by Shields because both are modelled after
Raven’s Progressive Matrices. For the female white sample (N = 66), the paral-
lel form reliability is .77, for the male white sample (N = 60) it is .73. As can be
seen from Table 4, the reliability estimated based on rr are in the same range
for the two cognitive variables. As one might expect, they are somewhat lower
for the two self-rating questionnaire variables.

In Table 4, the fit of both models is compared in terms of the unweighted
residuals (e’e/yy = 1 - eta?, where now e is the least squares error vector and y
the criterion vector) and also in terms of the predicted and observed intraclass
correlations for the MZTs and MZAs. To predict them from the genetic model
JFG3, negative variance estimates were replaced by zero, resulting in equal pre-
dictions for the MZTs and MZAs. As can be seen, regardless which measure of
fit one may choose, the correlated environments model fits roughly twice as
well as the genetic model proposed by Jinks and Fulker. In terms of the
predicted intraclass correlations (left columns of Table 4), the ratio JFG3/CE3
of the sums of squared discrepancies is 2.17, and in terms of the error measures
1-eta? left by both models after a least squares fit (right columns of Table 4) it is
2.10 for the four larger, pooled groups. For the eight smaller within sex analyses
it is 4.54.

This is not surprising, because we found early on that the Jinks and Fulker
model consistently makes the wrong qualitative predictions. In particular, the
inclusion of a separation variable s uniformly improves the differential predic-
tion of the two intraclass correlations, ra, rr, as it was designed to do, instead of
predicting the same intermediate value for both, as does the Jinks and Fulker
model for var(ep) = 0.
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TABLE 4. Comparison of fit between the genetic model JFG3 and the correlated environments
model CE3.

Test Group Intraclass correlations LS fit of models
. obs. predicted difference ee/yy = 1-eta?
sex wintype ¢ JFG3 CE3 JFG3 CE3 JFG3 CE3  ratio
Neuroticism
male together 01 .50 J1 -49 -.10 .09 .00 19.96
apart 71 .50 64 21 07 ‘
female together .46 49 43 -.03 03 01 00 14.66
apart .50 49 54 01 -.04
pooled 04 .03 1.73
Extraversion
male together .53 61 62 -.08 -.08 00 01 18
apart 73 61 63 g2 10
female together 38 53 35 -15 .03 07 00 100.07
apart 60 .53 .63 07 -03
pooled .06 02 327
Mill Hill
male together 70 .60 37 10 33 14 01 2791
apart 73 .60 81 A3 -08 ;
female together .76 70 71 06 05 .04 .00 4751
apart .78 .70 81 .08 -03
pooled 07 .02 4.31
Dominoes
male  together .90 76 74 14 16 01 01 245
apart 70 .76 78 -.06 -.08 ]
female together 65 67 .68 -.02 -03 .02 00 5552
apart 81 67 .78 14 .03
pooled 04 .03 1.56
Sums of squared residuals; 41 .19 21 .10 (pooled
only)
JFG3/CE3 ratio: 2.17 2.10

TABLEAU 4. Comparaison des ajustements entre le modéle génétique JFG3 et le modéle des
environnements corrélé, CE3,

It should be emphasized that the uniformly better fit of the correlated
environments model to the Shields data does not, of course, settle the nature/
nurture question one way or another. Rather, all we can say at this point is that

(a) The Shields data systematically violate critical qualitative predictions of
the genetic model Jinks and Fulker fitted to them. As a result, they obtained an
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inordinately high proportion of negative variance estimates. The confidence
bounds they used to camouflage this defect are statistically unsound.

(b) In contrast, the correlated environments model produces consistently
admissible parameter estimates and, moreover,

(c) it fits the Shields data quantitatively twice as well as the Jinks and
Fulker model.

In conclusion, whatever the scientific import of the Shields data may be,
they do not support the inferences Jinks and Fulker drew.

More recently, we found quite similar results for Osborne’s (1980) per-
sonality test data of MZs and DZs (Schénemann & Schénemann, 1988;
Schonemann, 1989). In this case, the fit of a purely environmental model sur-
passed that of the more traditional genetic model by a factor of 14. Not surpris-
ingly, the most dominant variance component was measurement error.

6. DISCUSSION

The more general lesson is that purely descriptive variance component
models, even if they were used properly with due regard to all assumptions,
remain intrinsically inconclusive about heritability questions simply because one
can never rule out that some other model may fit the data even better.
Presumably, this is what Kempthorne (1990), a leading quantitative geneticist
to whom Jinks and Fulker (1970) repeatedly appealed, had in mind when he
cautioned "that most of the literature on heritability in species that cannot be
experimentally manipulated, for example, in mating, should be ignored" (p.
139).

At the very least this literature should be treated with caution, especially
since lately signs have multiplied that it cannot be trusted for other reasons: It
now appears that patently absurd research claims were perpetuated for decades
because valid evidence which conflicts with them had been surpressed. The sur-
prising longevity of the flawed claims of Jinks and Fulker is just one case in
point (see Hirsch, 1990, for more details) but not the only one. Another exam-
ple is the recent dramatic revision of the 80% figure for IQ heritability which
had been help up as a natural constant rivalling the speed of light for almost a
century: "The heritability of the IQ -- that is, the percentage of individual differ-
ences variance attributable to genetic factors -- comes out to about 80 per cent,
the average value obtained from all relevant studies now reported" (Jensen,
1970, testifying before the US Congress). We now learn from Henderson (1982)
that "Today an estimate of 50% seems more in vogue" (p. 411) -- which puts
faulty heritability claims on par with fashion trends. Another instance is the
recent discovery that one of the most widely quoted heritability indices,
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Holzinger’s h2?, is mathematically unsound because Holzinger made a mistake
which human behavior geneticists and statisticians alike had overlooked for
over 50 years (Schénemann, 1988).

Thus it appears that some human behavior geneticists may not always have
realized the full scope of potentially adverse social implications that their
unwarranted inferences may have, and, as the record shows, already have had
(Blum, 1978; Chase, 1980; Robitscher, 1973; Shields, 1978).
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RESUME

On montre que le modéle génétique de Jinks et Fulker (1970), adapté aux données de
Shields (1962) sur des jumeauwx, est qualitativement incompatible avec des tendances
systématiques observées dans ces données ; en conséquence, ce modéle produit une pro-
portion inhabituelle d'estimations de variance négatives. Par opposition, un modéle
purement environnemental produit des prédictions qualitatives compatibles avec les données
de Shields, ainsi que des estimations de paramétres généralement admissibles. Quanti-
tativement, ce modéle s'ajuste beaucoup mieux aux données de Shields que ne le fait le
modeéle génétique de Jinks et Fulker. Dans I'état actuel, les conclusions de ces auteurs, d'une
portée considérable, ne sont pas prouvées par les données de Shields. Cette réévaluation
illustre le fait que des modéles purement descriptifs, méme utilisés avec circonspection, ne
permettent pas de se prononcer définitivement sur I'opposition entre nature et culture, car il
reste possible que d’autres modéles puissent s’ajuster @ ces mémes données.
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APPENDICES
Al: SUMS OF SQUARES OF Nx2 TWIN SCORE MATRICES

Let yik be the observed score of the K’th twin (k = 1,2) in the P’th family (i = 1,N),
and X = (xjj) be the Nx2 matrix of deviation scores xik := yik - ¥ around their grand mean
. On denoting the two columns of the deviation score matrix X by x1, x2, one has the
identity

xixy +x2%x2 = (x1 + x2)°(x1 + x2)/2 + (x1 - x2)°(x1 - x2)/2.
By definition, the total sum of squares is given by

SST:= Iy Zi(yik-¥)? = Zk Zixi® = x1'x1 + x2’x2.
For the sum of squares between rows (twin pairs) one finds

SSB:= Sy Xi(yi-9)P =2 Zi(yi-9)?

2 Zilyi +y2)/2-FF = iy + yi2 - 29)2/2
= (1 +x2)’(x1 + x2)/2.

By subtraction,

SSW = SST - SSB = (x1 - x2)’(x1 - x2)/2.

Thus, 28SB and 2SSW are simply the sums of squares of the row sums and row
differences of the Nx2 matrix of deviation scores around the grand mean ¥. If all yj have
the same mean u, E(X) = @. Since SST is a quadratic form of rank 2N-1, and SSW a
quadratic form of rank N-1, SSB has N-1 df and SSW N df.

A2: INTRACLASS CORRELATIONS

Intraclass correlations are measures of resemblance between twins within pairs. In
the sample, they can be defined
(@) as the product moment correlation between the two columns of the 2Nx2 matrix

x1 x2
X* := ( )
X2 X1
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(Harris, 1913; Fisher, 1921; Snedecor & Cochran, 1967), so as to remove the ambiguity
whether a twin’s score should be assigned to the left or right column ("double entry table
correlation”). In this case the intraclass correlation is given by

r = (SSB - SSW)/(SSB + SSW).

Alternatively, (b), the intraclass correlation can be defined as

r = (MSB - MSW)/(MSB + MSW),
which is the definition usually adopted in twin research and used throughout in the present
paper. One obtains a definition for the population by replacing the mean squares by their
expected values. In Schonemann (1987) its is shown that the non-null distribution of
s(p)/s(r) = s( p)MSB/MSW, where is is the involution s(x) := (1-x)/(1+x), is central
Fn-1N-

A3: THE JINKS AND FULKER 4-PARAMETER GENETIC MODEL (JFG4)

Jinks and Fulker (1970) fit the variance component model

y-Ui=gh+ gw + b+ Ew
to all 3 groups of twins, MZTs, MZAs, and DZTs jointly. This model postulates for the
MZTS: y1-pu =go+ gw + € + ew1  (1st twin)

y2-4 = go+ gw+€p+ew2  (2nd twin)
where all variables on the right have zero means, var(ewk) = var(ew), cov(gn.gw) =
cov(gnh,ek) = cov(gw,ex) = cov(er,e2) = 0.
Hence

Vi +y2-2u =2g + 28w + 2ep + w1 + Ew2

yi-y2 = Cwl - &w2
Together with the stated covariance assumptions, this implies for the expected sums of
squares
E(SSBT) = (N1-1)[2var(gy) + 2var(gw) + 2 var(ep) + var(ew)]
E(SSWT) = Nt var(ey)
where Nt is the number of pairs of twins raised together, and SSBT has NT-1 df and
SSWT N df by Al.

MZAS: y1- 4 =gy + gw + €1 + ew1  (1st twin)

y2- 4 =gb + gw+ ep2 +ew2 (2ndtwin)
with the same expected values and variance - covariance assumptions as for the MZTs,
except that now also E(evk) = 0 and the two epk are uncorrelated with each other and all
other variables on the right. Hence

Yi+y2-2u =28 + 28w + €1 + €p2 + Ewl + €w2

-y = €1 - €b2 + €wl - Cw2.
Together with the stated covariance assumptions, this model implies the expected sums of
squares
E(SSBA) = (Na-1)[2var(gp) + 2var(gw) + var(ep) + var(ew)]
E(SSWA) = Na[var(ep) + var(ew)],
where Na is the number of twin pairs raised apart, and SSBA has Na-1 df and SSWA Na
df by Al.
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This model does not imply that the total variance (= total mean squares) are the
same for MZT’s and MZA’s, ans Jinks and Fulker claim (1970, p. 326). Rather,
E(MSTT) := E(SSBT + SSWT)/(2Nr-1)
= (2Nt-2)[var(gp) + var(gw) + var(ep)]/(2NT1-1) + var(ew)
while
E(MSTA) := E(SSBA + SSWA)/(2Na-1)
= (2Na-2)[var(g) + var(gw)]/(2NA-1) + var(ep) + var(ew),
so that E(MSTT) # E(MSTA) in general, though the difference will be small since (2N-
2)/(2N-1) is close to 1.
Instead, the model predicts that the two expressions based on mean squares,
E(MSBT + MSWT) := E(MSBA + MSWA)
= 2[var(gp) + var(gw) + var(ep) + var(ew)]
will be equal. It also predicts E(MSBT-MSWT) > E(MSBA-MSWA):
E(MSBT - MSWT) = 2[var(gp) + var(gw) + var(ep)]
> 2{var(gy) + var(gw)] = E(MSBA - MSWA),
Consequently, pT > pa:
Pt := [var(g) + var(gw) + var(ep)]/[var(gp) + var(gw) + var(ep) + var(ew)]
> [var(gp) + var(gw)]/[var(gy) + var(gw) + var(ep) + var(ew)] =: PA.
The last three predictions are consistently violated by the Shields data.

Ad: THE 3-PARAMETER GENETIC MODEL (JFG3)

Since the 4 variance parameters of the genetic model JFG4 cannot be estimated on
the basis of identical twin data alone, Jinks and Fulker fit the 3-parameter model
y-p=g+eptew
to the MZTs, which results from JFG4 on defining g := g» + gw. For this model, the
expected sums of squares reduce to:
E(SSBT) = 2(Nr-1){var(g) + var(ep)] + (NT-1)var(ew)

E(SSWT) = Nt var(ew)
E(SSBA) = 2(Na-l)var(g) + (Na-1)[var(ep) + var(ew)]
E(SSWA) = Na [var(ep) + var(ew)].
Hence the least squares equations for estimating var(g), var(ep), and var(ew) are
SSBT 2NT-2  2Nt-2  Nt-1
var(g)
SSWT 0 0 Nt
= var(ep) + error
SSBA 2Na-2 Na-1 Na-1
var(ew)
SSWA 0 Na Na

Since the coefficient matrix contains a 3x3 non-singular triangular submatrix, it has full
column rank 3 for all NA, NT, so that the least squares estimates (LSEs) are unique.
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For the expected mean squares between twin types one finds:
E(MSTT) = E(MSTA), in general,

E(MSBT + MSWT) = 2[var(g) + var(ep) + var(ew)]

E(MSBT - MSWT) = 2[var(g) + var(ep)] > 2var(g)

pT:= [var(g) + var(ev))/[var(g) + var(en) + var(cw)]
> var(g)/[var(g) + var(ep) + var(ew)] =: pa

Note that var(ep) = 0 implies p1 = var(g)/[var(g) + var(ew)] = pa. The last four

predictions are consistently violated by the Shields data.

E(MSBA + MSWA)
E(MSBA - MSWA)

o

A5: THE 3-PARAMETER CORRELATED ENVIRONMENTS MODEL (CE3)

y-u=e+d+s
postulates an environmental variable e, a measurement error variable d, and a separation
variable s which affects only the MZAs (separated twins). If one further assumes that the
two environment variables ey, ez are perfectly correlated for the MZAs, one finds, for the
MZTs: yi-u =e+dg (1st twin)
y2-u =e+dp (2nd twin)
where the variables on the right of each equation have zero means, var(d;) = var(dz),
cov(e,dx) = cov(dy,d2) = 0. Hence
i+ty-2u=2+di+d
yi-y2 = dy - da
Hence the expected sums of squares are
E(SSBT) = (Nt-1)[2var(e) + var(d)]
E(SSWT) = Nt var(d).
MZAs: yi-u =ep +dp +s
y2-u =ex+dx +s
where the three variables on the right of each equation have zero means, var(e;) = var(ez)
= var(e), var(dy) = var(dz) = var(d), cov(s,dx) = cov(s,ex) = cov(ek,dj) = cov(di,d2) = 0,
but cov(ey,e2) = var(e), so that the two environmental variables affecting two separated
twins are perfectly correlated (in contrast, the genetic models JFG4 and JFG3 assume that
e1 is perfectly uncorrelated with e3). Hence
yityn-2u=e+e2+d+dy+2%
y1-y =e - e+d - d
This implies the expected sums of squares
E(SSBA) = (Na-1)[2var(e) + var(d) + 2var(s)]
E(SSWA) = Na var(d),
since var(e1+ez) = 4 var(e) for MSBA, while for MSWA the covariance term cancels
against var(e).
Hence the expected mean squares between twin types are
E(MSBT + MSWT) = 2[var(e) + var(d)]
< 2[var(e) + var(d) + var(s)] = E(MSBA - MSWA)
E(MSBT - MSWT) = 2var(e)
< 2|var(e) + var(s)] = E(MSBA - MSWA).
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The intraclass correlations are
pr = var(e)/[var(e) + var(d)]
< [var(e) + var(s)}/[var(e) + var(d) + var(s)] = pa.
These ordinal predictions agree with the Shields data. Note that pT is simply the
reliability of y.
The least squares equations for this model are

SSBT 2N1-2  2Nt-1 0
var(e)
SSWT 0 Nt 0
= var(d) + error
SSBA 2NA-2  Na-1  2Na-2
var(s)
SSWA 0 Na 0

The coefficient matrix has always full column rank 3 for the same reasons as that of
JFG3 so that the LSEs are unique. If the models are fitted to the males and females
jointly, the coefficient matrices are replicated twice for JFG3 and CE3.



