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ON NON-NULL TESTS OF INTRACLASS CORRELATIONS

PETER H. SCHONEMANN

National Taiwan University*

It is shown that the non-null distribution of a simple transform of

the 2-variable intraclass correlati

standard F-tables could be used to test hypotheses about intraclass cor-
relations. In a simulation, Fisher’s normal approximation was compared
with the exact test for three different intraclass correlation- estimates.:

Overall, the results' were very close,

is an excellent approximation even when the sample size is small.

Intraclass correlations are widely
used in human genetics to assess the
similarity of various types of twins
and siblings. In these applications,
N, the number of families, is usually
quite small (e. g, Shields, 1962; Jinks
and Fulker, 1970). Early authors,
e. g, Harris (1913), Fisher (1921), had
defined the intraclass correlation ry
as the product-moment correlation of
a “double entry table”, a 2NX2 table
of scores where each pair is entered
once as (z;, y;) and once as (¥ i),
to remove the ambiguity whether
a twin’s score should occur on the
right or on the left. Harris (1913)
has shown that this definition is
equivalent to

, _(SSB—SSW)_
1’ =(SSB+SSW)~ "

where SSB, SSW are the between and
within sums of squares of the original
Nx2 score matrix. (The notation 7/
follow Snedecor and Cochran, 1967.
For notational convenience, it will be

! (1.1)
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on is central F. Hence, in principle,
confirming that Fisher’s z-transform
denoted 7' from now on. The gener-

alization to classes consisting of
m>2 siblings will not be considered
here).

Some modern authors (e. g., Winer,
1971, p. 244; Jinks and Fulker, 1970)
follow Scheffe (1959, p.233) in re-
stricting the definition of the intra-
class correlation to a variance ratio,
which, of course, cannot be negative.
In contrast, the intraclass correlation
(1.1) will be negative whenever SSB<
SSW. As Snedecor and Cochran (1967,
p. 294) observed, “the [intraclass cor-
relation] model is more general than
the components of variance model. ..
if, for instance, four young animals
in a pen compete for an insufficient
supply of food, the stronger animals
may drive away the weaker and may
regularly get most of the food. For
this reason the variance in weight
within pens may be larger than that
between pens, this being a real pheno-
menon and not an accident of sampl-
ing. We say that there is a negative
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correlation between the weights
within a pen.” The analogy to twins
is obvious. Hence it should not come
as a surprise that human geneticists
occasionally encounter negative in-
traclass correlations (e.g. Jinks and
Fulker, loc. cit., p. 333).
In (1921), Fisher derived the exact
distribution of #’.
dF(r")=c(N, =)
«sech ¥-.5(z—¢)
sexp[— 5(z—-9)]1 (1.2)
where
¢(N,z), =I"(N— 5)/(N-1)y/ 2r;
zi==tanh~1(»'),
g: =tanh~1(p),

#’ is the sample intraclass correlation,

p its population value, and N the
number of classes (Kendall and
Stewart, ‘1961, p. 315). Since this

distribution is not easily tabled, Fisher
recommended his well-known z-trans-
formation, with ¢,/=(N—-3/2)"1/2, as
an approximate test for the non-null
case when N is “large.”

Geneticists often use a variant of
r;’ based on mean squares,

__(MSB—MSW)_
“-“(MSB+MSW)"7

which relates directly to the F of a
random effects ANOVA. As Snedecor
and Cochran note, “r;’ differs slightly
from r;, the difference being trivial
unless [N] (the number of classes) is
small” (p. 296, loc. cit.). The exact
relation is
r'=(r—a)/(1—ar)<r<y'+a,

where

(1.3)

a: =1/(2N-1). (1.4)
Although 7 has no longer an in-
tuitively straightforward interpre-

tation as the corrrelation of ‘a double

entry table, it could be viewed simply
as an approximation to #’.

In some applications, it may not
be unreasonable to assume that the
population mean p is “known”, for
example, when the sample size is
large, or when standard tests are
used whose mean is known. In twin
research the Wechsler, the Stanford
Binet, and the PMA are often used
whose population means are 100. To
cover these situations, a third intra-
class correlation,

v, _(SSB*=SSW)_ ,

P = (SSB*+ SSwWHY ™"
will be defined, where SSB* is based
on the deviation scores around the
known population mean . SSWis the
same as in (1.2) since it is unaffected
by the mean.

The well-known definitions of the

(1.5)

sums. of squares reduce for NX2
tables to
SSW: =(z—y) (z—v)/2  (1.6)

where #, ¥y denote the two columns
of the matrix of .deviation score
vectors- around the (sample) grand
mean (or, equivalently, around the
population mean, since the mean
cancels in difference scores). Simi-
larly, the between sums of squares
are given by

SSB: =(x+y) (x+y)/2 (1.7)

when the mean is not known, so that
xz, y are the deviation score vectors
around the (sample) grand mean.
They are given by

SSB*:=(a*+y*) (z*+y*)/2 (1.8)

when the mean is 'known, so ‘that
x*, y* are the deviation score vectors
around the population mean g.
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It will now be shown that the

non-null distributions of a simple
transform of the three intraclass
correlations, (1.2), (1.3), (1.5) are

central F. The transfrom is given by
the involution

s: Re—Re: s(z):=(1—z)/(1+=),
xE—1, (1.9)
which, as is easily verified, satisfies
s[s(2)1=2, s(&)+s(1/z)=0,
s(z)s(—z)=1 (1.10)

This involution reduces the three
intraclass correlations to

y'=s(SSW/SSB),
r=s(MSW/MSB),

r*=s(SSW/SSB¥). (1.11)
In view of (1.10), one finds
s(r")=SSW/SSB,
s(r)=MSW/MSB,
s(r*)=SSW/SSB*. (1.12)

Thus, even though, strictly speaking,
it is incorrect to interpret intraclass
correlations as variance ratios, the
s-transforms of # and #* can be so
interpreted, and the s-transform of #/
is proportional to a variance ratio.

EXACT NON-NULL DISTRIBUTIONS

The basic argument needed to
establish that the s-transforms  of
the intraclass correlations (1.12) are
central F follows along standard
lines: A random vector (2i, ¥i) 1S
transformed to principal axes and
then standardized. The resulting
vector (u;, v;) is N(¢ I). Hence any
pair . of quadratic forms (sums of
squares) in the u; and v;, respectively,
are two independent chi-square vari-
ables and their ratio is central F..

Theorem 1: Let (i, y;) be N
independent, identically distributed
random vectors with bivariate normal
distribution

N(g; 22,
where
=)
and
1 p
hI: 0'2< > (2.1)
p 1
Then
F(r"): =Ns(p)/s(r')(N-1)
=s(p)MSB/MSW
~Fy-1,m (2.2)
F(r): =s(p)/s(r)=F(@")
=s(p) MSB/MSW
NFN—I,N7 (2'3)
F(r*): =s(p)/s(r*)
=5(p)SSB*/SSW
~Fy, Ny (2.4)

where F,,, denotes a central F-vari-
ate with p degrees of freedom (df)
for the numerator and ¢ df for the
denominator.

Proof: If the eigendecomposition
of Y=¢? VD*V’', where

V. =2'1/2(1 1),

1 -1
(1+p)1/2 0 )
(70 ) @9

then the principal axes transforma-
tion, followed by standardization,

D. =

(2.6)

produces two uncorrelated standard
normal variables u;, vi which repro-
duce the original variables: as
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z;=e[(14p) /2] %u;
+ol(1—p) /21 20+
vi=e[(1+p)/2]1 %u;
—o[(1=p) /21 20+ 1. (2.7)
Hence
zi—yi=c[2(1—p)]1' 20, (2.8)

w;+y;=0[2(1+p)]1/2u,‘+2ﬂ, (2 9)

and the sum of the two sample
means (= twice the grandmean) is

F+i=e[2(1+p)]' % +2p  (2.10)

Therefore, the sum of deviation
scores around the grandmean is

(2i—&)+(v;—7)
=o[2(1+p) 1V 2(u;~7).  (2.11)

On summing the squares of (2.7),
(2.12), and of (2.8) when x=0, one

obtains the central chi-square
variates,
2SSW=2.:(=; —¥;)?
~20%(1—p)22y,
2SSB*=3% (i +y:)?
~202(1+p)2%),
2SSB=X(z;+y;i—&—7)*
~26%(1+p)2%,_,,  (2.12)

where y,? denotes a central chi-square
variate with # df. Since SSW and
SSB* are quadratic forms of rank N,
they each have N df. Since SSB is
a quadratic form of rank N—1, it has
N—-1 df. Since SSW is a function of
the v;, while SSB, SSB* are functions
of the #; which are independent of
the v;, SSB and SSB* are independent
of SSW. Hence the ratios (2.2), (2.3)
(2. 4) are central F with the indicated
df. qed.

SIMULATIONS

The performance of the approx-
imate Fisher z-tests of 7* #/, and »

Peter H. Sch8nemann

was compared with that of the
s-transforms in an (IBM PC) computer
simulation. As sample sizes N=20,
40, 80, and 160 were used, and as
population correlations p=.3, 5, 7,
and .9. Although the means and
variances should of course not affect
the outcome of the tests, two different
means, g=b and p=-20, and two
standard deviations, ¢=3 and ¢=15,
were used as a check on the robust-
ness of the simulation results. A
completely crossed design for N, p, g,
and ¢ thus yielded (4)(4)(2)(2)=64
parameter configurations, each of
which was replicated 400 times.
Within each replication, an NX2
score matrix was drawn randomly
from a normal (0, 1) distribution and
then transformed according to eq.
(2.7) into a score matrix of N replica-
tions with specified population mean,
variance and- intraclass correlation.
After computing the intraclass corre-
lations (1.1), (1.3), (1.5), the rejection
rates were tabulated for five test-
statistics: the two exact tests F(#')
(=F(r)) and F(r*), and the three ap-
proximate tests z(7'), z(r), and z(r¥),
based on Fisher’s inverse hyperbolic
tangent transform of #/, 7, and #%
respectively, with ¢,:=(N—-15)"1/2,
The results of this simulation are
summarized in Table 1 for four
different « levels (.2, .1, .05, and .025).
The first five columns in the body
of each subtable give the empirical
rejection rates and the last five
columns the differences, observed
minus nominal «, for ease of com-
parison. The next to last row in each
subtable gives the column means
(across correlations nested within
sample sizes) as an overall index of
bias. The last row gives the column
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sums of squars of the observed minus
nominal « discrepancies as an index
of overall performance.

Each entry in the body of the
subtables is based on 1600 replications
(it represents the average across
four means by variances configura-

Table 1

tions), Inspite of this relatively large
replication number, there is still some
variability left in the observed rejec-
tion rates but most of it appears to
be unrelated to the systematically
varied parameters N, p, g, and o. In
particular, the rejection rates of

Rejection rates of various tests of intraclass correlations

a=.20 Observed rates Observed minus nominal rates

N e F@*) F@) 20*)  2(r")  z2(n) F(r*) F(r") 2(r*) z(r") z2(r)
20 .3 .198 .196 .193 .164 .194 —.002 —.004 —.007 —.036. —.007
20 .5 .209 .203 .203 .181 .200 .009 .002 .002 —.020 .000
20 ) .219 .222 211 L1185 217 .018 .022 .010 —.015. .017
20 9 .190 .197 .187 .163 .195 —.010 —.003 —.013 —.038- —.005
40 3 .202 .204 .200 .179 .201 .002 .004 .000 —.021 .001
40 .5 .199 .196 .198 175 +194 —.001 —.004 —.002 —.025 —.006
40 7 .200 .197 .194 .169 .194 .000 —.003 —.006 ~-.031 —.006
40 .9 .198 .202 .195 A77 .201 —.002 .002 —.005 —.023 .001
80 .3 .192 L1940 192 .182 .193 —.008 —.006 —.008 —.018 —.007
80 .5 .220 .220 .219 .199 .219 .020 .020 .018 —.002 .019
80 7 .201 .197 .200 .181 .196 .001 —.003 .000 —.019 —.004
30 .9 .194 .198 .192 .178 .198 —.006 —.003 —.009 —.022 —.003
160 3 .220 .218 .220 .209 218 .020 .018 .020 .010 .018
160 .5 .191 .187 .189 177 187 —.009 —.013 —.011 —.024 -.013
160 7 .221 .220 .219 .206 .219 .020 .020 019 005 .019
160 .9 .200 .200 .200 .188 .200 —.001 .000 -—,001 -—.013 .000
Means .203 .203 .201 .182 202 .003 .003 .000 —.018 .001
SSQ : .002 .002 .002 .008 .002
a=.10 Observed. rates Observed minus nominal rates

N o F(*) F@) 2% 207 . 2(r) F(r*) E(") 2(r*) z2(r") z(r)
20 .3 .087 .081 .084 .061 .078 —.013 —.020 —.016 —.039 —.022
20 .5 .097 .100 .093 075 .097 —.004 .001 —.008 -—.025 —.003
20 7. .109 L1t .106 .088 .109 .009 .011 .005 —.013 .009
20 .9 .100 .094 .092 .074 .093 —.001 —.005 —.008 —.027 —.007
40 .3 .103 .101 .100 .083  .101 .002 .001 .001 ~.017 .001
40 .5 .104 .100 .102 .086 .099 .004 —.001 .002 —.014 —.001
40 i .091 .089 .090 .074 .087 —.009 —.011 —.010 —.026 —.013
40 9 .098 .095 .096 .083 .095 —.002 —.004 —.004 —.017 —.004
80 .3 .105 .104 105 .100 .104 .005 .004 .005 .001 .004
80 .5 114 .115 114 110 115 .014 .015 .014 .010 .014
80 7 .098 .098 .098 .090 .098 —.002 —.002 —.002 -.010 —.002
80 .9 .091 .093 .089 .084 .092 —.009 —.007 —.011 —.017 —.008
160 .3 .109 .108 .109 .104 .108 .009 .008 .009 .004 .008
160 .5 .097 .099 .097 .091 .098 —.003 - —.002 —.003 —.009 —.002
160 .7 112 112 112 .104 112 .012 .012 .012 .004 012
160 .9 .085 .086 .084 .081 .086 —.015 —.014 —.016 —.019 -.015
Means .100 .099 .098 .087 .098 .000 —.001 —.002 —.013 ==, 002
SSQ - .001 .001 - .001 - .005 .002




Fisher’s z-test are virtually indisting-
uishable from those of the exact F-
tests with one exception,. those of
(z(#"), which, for small N, tends to
accept” Hp too readily. '
Thus, the overall conclusion is
that Fisher’s z-tests based on 7* or r

8 ‘Peter H. Schdnemann
(Table 1 continued)
a=.05 Observed rates Observed minus nominal rates
N o F(U*)  F@') 2% 20 z(r) F(r*) F(r") z(r*) 2(r") 2(r)
20 .3 .036 .039 .035 .030 .038 —.014 —.011 —.015 —.021 . —.013
20 .5 .044 .043 042 .030 .043 —.006 —.007 —.008 —.021 —.008
20 i .056 .057 .053 044 .056 .005 007 .003 —.007 .006
20 .9 .046 .047 .045 .038 .044 —.004 -—.003 —.005 —.012 - .006
40 .3 .047 .047 .047 .041 .046 —.004 —.003 —.004 —.009 -.004
40 .5 .052 .053 .051 .045 .052 .002 .002 .001 —.005  .002
40 i .044 .044 .044 .041 044 —.096 ~—.006 —.006 —.009 —.006
40 .9 .053 .055 .053 .049 .055 .003 .005 .003 —.001 .005
80 3 .053 .053 .053 .050 .053 .003 .003 .003 .000 .003
80 .5 .058 .055 .057 .050 .055 .008 .004 .007 .000- .004
80 ) .051 .050 .051 .046 .049 .001 .000 .001 —.005 —.001
80 9 .047 .045 .047 .045 .045 —.002 —.004 —,002 —.006 -—.004
160 .3 .057 .059 .057 .053 .058 .007 .009 .007 .003 .008
160 .5 .047 .048 .047 .045 .048 —.003 —.002 —.003 —.005 —.002
160 i 054 .054 054  .050 .054 -.004 .004 .004 .000 .004
160 .9 .042 .043 .040 .039 .043 —.008 —.007 —.010 —.011 —.007
Means .049 .049 049 .043 .049 —.001 —.001 —.001 —.007 —.001
SSQ .001 .000 .001 .001 .001
a=.025 Observed rates Observed minus nominal rates
"N o FEG*) F@) 2% (') z(r) F(r*) F(r") z2(r*) z2(r") z(r)
20 3 .019  .019 017 .016 .019 —.007 —.007 —.008 . —.009  —.007
20 .5 .025 022 .022 .016 .022 .000  —.003 —.002 —.009 —.003
20 7 .027 .029 025 .018 .029 .002 .004 .000 —.007 .004
20 .9 025 027 .024 .021 .027 .000 .002 —.001 —.004 .002
40 .3 025 022 .024 .020 022 .000 ~ —.003 —.001 —.005 -—.003
40 .5 027 .028 .027 .024 .028 002 . .003 .002 —.001 .003
40 . 7 .023 .022 .023 021 022 —.002 —.003 —.002 —.004 —.003
40 .9 .027 .031 .027 .025 .031 .002 .005 .002 —.001 005
80 3 .033 .030- ¢ 032 .026 .030 .008 .005 .007 .001 .005
80 .5 .032 .031 .031 .025 .031 .007 .005 .006 .000 .005
80 i .022 .023 .022 .020 .023 -—.003 —.,002 —.004 —.005 —.002
80 .9 .029 .028 .029 .027 .028 .004 .003 .004 .002 .003
160 .3 .030 .029 .030 .027 .029 .005 .004 .005 .002 .004
160 .5 .026 .026 .026 .024 .026 .001 .001 .001 —.001 .001
160 N .024 .023 .024 .023 .023 —.001 —.002 —.001 —.002 —.002
160 .9 .022 .022 022 .019 0.22 —.003 —.003 —.003 —.006 —.003
Means .026 .026 .025 .022 026 .001 .001 .000 —.003 .001
SSQ .000 000 .000 .000 .000

are excellent approximations to the
corresponding exact F-tests even when
sample sizes are small (as they often
are in twin studies). For small
sample sizes, the intraclass ‘correla-
tion » based on mean squares is
preferable over the more descriptive
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estimate #' based on sums of squares,
because the z-transform of #/ has a
slight conservative bias when N<40.

NUMERICAL ILLUSTRATION

To test
Hy: p=po vs. Hi: p>>po, (3.2)
in the most typical case, when p is

not known, first compute the sample
intraclass correlation #

(MSB—MSW)

=SB+ MSW) (3.2)
Then the statistic
_s(pe) _(1=po)(1+7)
F==0=nd+pn &3

is central F with N—1 df for the
numerator and N df for the deno-
minator under H,. If this statistic
exceeds the tabled F-value at the
alpha level, reject Hp

If x; y; now denote the observed
scores, then the sums of squares are
given by

SSB: =Xl (zi—w)+(yi—W)1%/2,
SSW1=Zi($i'—yi)2/2 (34)

where # denotes the grandmean,
w: =(Xzi+2iv:)/2N. To illustrate
these computations concretely, as-
sume the mean is not known and
r= 8, N=20, po= 6. Let us use a=
05. Then s(#»)=(1—.8)/(1+.8)=111,
s(po)=.25, and F(r)= .25/.11=2.27.
Since the tabled .05 upper tail value
of F with (19, 20) degrees of freedom
is 2.12, Hy: p=.6 can be rejected in
favor of Hy: o> .6 at the .05 level of
significance.

A 100(1—a)% confidence interval
is obtained in the usual way by
inverting the probability over the
acceptance region,

Prob(Li<F(r)<Ly)=1—a, (3.5)

where L,: =F 1y y(1—a/2) and
Li: =F 'y, n(a/2).
Since
L1<S(P)/S(7’)<L2 &
Lis(r)<s(p)<Las(r), (3.6)

one obtains, upon applying the in-
volution s, ,

Prob{s[s(#)L,1<p<s[s(r)L,1}
Svie ' (3.7)

e. g, to continue with the above ex-
ample, where F~ly 3= .464,

Prob{s[(.111)(2.12)1<p
<s[(.111)(.464)1}
=Prob[s(.235)<p<s(.052)]
—=Prob[.62<p< .90]1= 90. (3.8)

This 90% confidence interval agrees
with that obtained via Fisher’s z-
transform within two decimal places.
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