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‘Abstract. It is shown that the additive genetic model of Nichols needed
to justify the heritability ratio HR does not fit Osborne's (1980)
personality data very well. A purely environmental model with the same
number of parameters fits these data better by a factor of 14. Compared
with the additive genetic model, these empirical results suggest that
Osborne's personality data contain no genetic component at all. The
responses of identical twins may be more similar simply because they
are exposed to more similar environments than fraternal twins. This
outcome illustrates the general principle that conventional variance
component niodels used to justify heritability estimates are intrinsically
inconclusive: We can never rule out that another, qualitatively quite
different model fits the same data equally well or, as in the present case,
much better.
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1. INTRODUCTION

In 1970 Jengen informed the General Subcommittee on Education,
House Education and Labor Committee that *individual differences in
intelligence, that is, 1Q, are predominantly attributable to genetic differ-
ences, with. environmental factors contributing a minor portion of the
variance among individuals. The heritability of the 1IQ ... comes out to
about 80 percent, the average value obtained from all relevant studies
now reported” (Jensen, 1970, p. H6325).

This assessment was shared by well known population geneticists:
“The twin data, however, leave no serious doubt that heritability [of 1Q]
was at least 70% and perhaps as great as 80% in the populations studied
... Similarly high total heritabilities have been derived by most authors,
irrespective of the precise formula used for h2" (Wright, 1978, p.' 414).
As Wright noted, most of these estimates were derived from twin
studies. Broadly, these studies fall into two main categories: (a) those
comparing monozygotic twins raised together (MZTs) with monozygotic
twins raised apart (MZAs), and (b) those comparing MZTs with
dizygotic twins raised together (DZTs).

The empirical basis of twin studies of type (a) is exceedingly smail.
It shrank further when Kamin discovered that more than half of the then
extant MZA data, those reported by Burt, were untrustworthy (Kamin,
1974; Hearnshaw, 1981). The largest remaining MZA study, by Shields
(1962), contains only 44 pairs of MZAs. A recent re-examination of
Shields' data in (Schénemann, 1990) showed that the conventional
variance component model which underlies the heritability ratios (e.g.,
Jinks & Fulker, 1970) is systematically violated by these data:

(a) Contrary to the predictions of this model, twins raised in the same
environment resembled each other less, not more, than twins raised in
different environments, and

(b) the estimates of the environmental variance components turned
out negative in 12 out of 12 subsets of the data.

(c) On fitting the same data to a purely environmental model which
postulates no genetic components at all, the fit improved by a factor of
2.

* The main problem with MZT/MZA data, apart from the necessarily
small sample sizes for MZAs, is that twins raised apart are not random-
ly assigned to different environments. Once this assumption is violated,
the underlying variance component model, and thus the heritability
ratios derived from it, become invalid. ‘
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In the present paper, we turn our attention to the second type of twin
studies, those comparing monozygotic and dizygotic twins raised
together (MZTs and DZTs, MZs and DZs from now on). Such data are
more interesting than those of MZTs and MZAs because

(a) the sample sizes are usually much larger, and

(b) MZ/DZ data agree at least with one basic prediction of the
classical random components model: MZs should resemble each other
more than DZs, since MZs, by definition, share exactly the same genes,
while DZs share only half the genes on average.

Twin resemblance is usually measured in terms of a so-called
“intraclass correlation coefficient” which, for twins, varies between -1
and 1. Its sample estimate can be computed in terms of mean squares as

r = (MSB - MSW)/(MSB + MSW),

where MSB denotes the mean square between (families) and MSW the
mean square within (see Appendix 1 for details). An intraclass correla-
tion can be viewed as an ordinary correlation computed from a "double
entry table" which contains each twin pair twice, once as (¥i1, ¥i2) and
once as (Yi2, Yi1), SO as to remove the ambiguity as to whether a twin's
score should appear on the left or on the right. As Osborne (1980, p.
16) notes, one usually finds that the intraclass correlation ry for MZs
raised together exceeds the correlation rp for DZs raised together by
roughly .2 over a wide range of cognitive and personality tests.

If certain additivity assumptions are met by the data, then the sample
intraclass correlations ry, rp can be used to estimate "broad herita-
bility",

hg:= var(g)/[var(g) +var(e)],
i.e., the proportion the genetic component g contributes to the variance
of the observed score y := g + e + z, where e is the environmental
component, with the measurement error component z removed. Nichols
(1965) has proposed the statistic
HR := 2(ry - Ip)/TM
as an estimate of hg. As shown in Appendix 3, HR follows as a valid
deduction from a strictly additive genetic variance component model. In
contrast, the older coefficient,
h?:= (l'M - I'D)/(l - l'D),

proposed by Holzinger (Newman, Freeman, & Holzinger, %1937), is not
a valid heritability estimate, because Holzinger's derivations were
unsound. As was shown in more detail in Schonemann (1989), his
derivations imply that dizygotic twins share no genes. This conflicts
with standard genetic theory that they share half .the genes.
Consequently, we shall focus on HR in this paper. ‘
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In terms of HR, the MZ/DZ data raise some perplexing questions:

(2) The HRs tend to be much higher for mental tests than for biolog-
ical variables used in controlled animal breeding experiments. King
(1981) reports heritability estimates for milk production in cattle of the
order of .3, those of egg production in poultry rarely exceed .5. In
contrast, Jensen (above) reports an overall average heritability of .8 for
“intelligence". For personality tests, one often finds that HR exceeds 1.

(b) The magnitude of HR tends to increase inversely with the quality
of the tests: Osbome (p. 22, loc. cit.) reports intraclass correlations
implying HRs of .63 for "General Ability" measured by the National
Merit Scholarship Qualification Test. The averages for the presumably
less reliable personality tests are .98. Those for "Goals and Ideals" and
for "Self Concept" rating scales even exceed 1. Rowe (1981, p. 205)
reports MZ/DZ data for the "Perceived Parental Dimension, Perception
* of Father and Perception of Mother® implying HRs of 1.43 and’ 1.37.
For Cattell's High School Personality Questionnaire (Osborne, 1980, p.
127), 23 out of 42 (= 54.8%) heritability ratios exceed 1. Altogether
" 69% of the ratios are inadmissible (i.e., outside the range [0,1]). For
Jenkins' Personality Test, (1959) “How Well Do You Know Yourself",
this proportion rises to 76%. The majority of the estimates are again too
large.

(c) The heritability ratios HR are often high even for variables for
which it is difficult to imagine any genetic components. For example,
Loehlin and Nichols (1976) asked large samples of male and female
MZs and DZs to indicate "things you have done during the past year"
(Appendices, p. 6) and reported the intraclass correlations. For the item
“Baby sat" (item 102), one finds HR = .35 for the males and .47 for
the females. For item 239, “Used a thermometer and took your
temperature,” the two HRs were .89 and .88, For item 250, "Had your
back rubbed," the HRs were 92 and .21. For all these items, the
intraclass correlations were higher for the MZs.

2. THE STRICTLY ADDITIVE GENETIC MODEL AG3

As shown in Appendix A3, Nichols' (1965) heritability ratio HR
defined by
HR := 2(ry - Ip)/T™M
.can be justified as an estimate of "narrow heritability" if a 3-parameter
variance component model fits the data, which postulates three types of
latent variables: genetic variables ay, an environmental variable e, and
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measurement error variables zy. This is an adaptation to MZ/DZ Ydata of
the genetic model Jinks and Fulker (1970) used to describe the Shields
(11999%2)) MZT/MZA data, although with dubious success (Schonemann,
N This model (see Fig. 1A) explains the observed scores yy, y2 of MZs
y

MZs: y;-p=a+tetz, ya-p=ate+tz
under the assumption that the genetic, environmental, and measurement
error variables have zero means and are uncorrelated (see left side of
Fig. 1A). The observed scores Y1, y2 of two DZs are explained by

DZs: yj-u=a t+te+tz, yo-p =2 tetzn
under the added assumption that the correlation between a, and aj is 1/2
in accordance with standard genetic theory (right side of Fig. 1A). Since
this model includes genetic variables and fits three parameters, we
denote it "AG3".

The model AG3 implies a number of ordinal predictions about the
mean squares and intraclass correlations which should be checked before
one attaches meaning to HR (see Appendix 3):

(2) E(MSBM + MSWM) = E(MSBD + MSWD),

(b) E(MSBD - MSWD) = E(MSBM - MSWM)/2.
Conditions (a), (b) together imply the stronger condition

0 < pmlz <pp S PM = 1,
where py; denotes the population intraclass correlation for the MZs, and
pp for the DZs.

The model AG3 also implies the identity

var(a)/[var(a)+var(e)] = HR,
i.e., Nichol's heritability ratio HR coincides with "narrow heritability"
hp if (and only if) AG3 fits the data.

Jensen (1967, p. 149) dismisses both Holzinger's h2 (which he de-
notes "H") and HR with the curious logic "that one is not a monotonic
function of the other". But the fact that two answers to the same
question disagree (e.g., the answers "2 and 3" to 1+1 = ?) does not
rule out that one of them might be correct. Nichols' HR is an estimate
of narrow heritability, if and only if, AG3 fits the data, regardless how
it relates to other, incorrect heritability estimates.

Jensen has modified Nichols' HR to arrive at yet a third heritability
estimate, which we denote

JHR := 2(ry - Ip),
but without supplying an explicit variance component model from which
it could be derived. JHR could be viewed as a limiting case of HR when
ry = 1 (in which case, it should be written 2(1-rp)). However, to
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impose such a condition on Nichols' HR would further restrict its pros-
pects for empirical verification, which are already dim enough without
imposing additional constraints.
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Figure 1. Three models for identical and fraternal twins. A: The additiv'e
genetic model AG3. B: the purely environmental model E3. C: Fisher's
dominance model with measurement error, DG4.

Left side: MZs. Right side: DZs. Boxes = independent variables (Genetic
variables: a = additive values, d = dominance deviations. The measurement
errors zj have been omitted for clarity. Environmental variables: e, ep =
common environment, ey = additional common environment mdpced by
physical resemblance of MZs). Curved lines = correlations between indepen-
dent variables. Circles = dependent variables: y, Y = scores of both twins.
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3. THE 3-PARAMETER ENVIRONMENTAL VARIANCE
COMPONENTS MODEL E3

The fact that the intraclass correlations of MZs generally exceed
those of DZs agrees with the hereditarian premise that mental tests
contain a substantial genetic component. However, as several authors
already noticed in the 30s, this is by no means the only possible expla-
nation of the greater resemblance of MZs. For example, Jones (1949)
proposed an alternative explanation:

" we must also take into account the fact of a greater degree of
environmental similarity. Several studies have shown that identical twins
spend more time together, enjoy more similar reputations, are more
likely to be in the same classrooms, have more similar health records,
and, in many other respects, share a more common physica{' and social
environment than ordinarily experienced by fraternal twins (Stotks,
1930-1931; Jones and Wilson, 1932-1933; Wilson, 1934; Lehtovaara,
1938)" (Jones, 1949, p. 613). ;

The main purpose of the present paper is to assess the relative
plausibility of these two contrasting explanations of MZ/DZ twin data.
To capture the essence of the environmental hypothesis, we postulate a
3-parameter environmental variance component model (E3) which con-
tains no genetic variables at all, and which has exactly the same number
of parameters as the genetic model AG3, so that the relative fit of both
models can be compared:

To predict larger intraclass correlations for MZs than for DZs, we
postulate two environmental variables, a baseline environmental variable
ep, which enters the scores of both MZs and DZs, and a second com-
ponent ey, which only enters the scores of the MZs, thus raising their
environmental variance. In addition, we again postulate measurement
error variables z to account for the differences in reliability of the
various personality tests. Specifically, we postulate for the MZs:

MZs: y;-p=eyt+ep+z, Yr-p=emteptn,
under the stochastic restriction that all variables on the right of the
equality signs are pairwise uncorrelated and have zero means (left side
of Fig. 1B). The model for the DZs is:

DZs: yy-p=ep+z, Y2-p=€p+1
(right side of Fig. 1B). As shown in Appendix 4, this implies
E(MSBM+MSWM) = E(MSBD+MSWD)
E(MSBM-MSBD) = 2var(ey) = 0, E(MSWM) = var(z) = E(MSWD),
1 = py = [var(ey) +var(ep)] / [var(ep) +var(ep) +var(z)]
= var(ep)/ [var(ep)+var(z)] = pp = 0.
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4. RELATIVE FIT OF AG3 VERSUS E3 FOR OSBORNE'S
PERSONALITY DATA

Osborne (1980) has provided a wealth of physical, cognitive, and
personality data for same-sex monozygotic and dizygotic twins. In this
report, we focus on his personality test data, which are conveniently
summarized in Tables XII-E and XII-I (p. 127 and p. 135). Our interest
in this particular subset of the Osbome data was aroused by the excessi-
vely large proportion of inadmissible heritability ratios HR.

Table XII-E (p. 128, loc. cit.) gives the results for relatively large
samples of teenage male and female MZs and DZs for Jenkins' person-
ality questionnaire "How Well Do You Know Yourself?* (HWDYKY,
Jenkins, 1959). Osborne reports the intraclass correlations for its 17
subscales and 2 "control scales" (p. 126), the sample sizes, the herita-
bility ratios h? and HR, and the mean squares within both twin’ types.
This information permits reconstruction of the between sums of squares
within the accuracy of the reported figures (2 decimal places), so that
various variance component models can be fitted to these data, which
are summarized in Table 1A. Columns 1 and 2 give the intraclass corre-
lations and columns 3-6 the mean squares. For the content of the 19
subscales, see loc. cit. ' :

In Table XIII (p. 135, loc. cit.), Osborne gives the results for
teenage white and black MZs and DZs and for the pooled sample for
Cattell's "High School Personality Questionnaire” (HSPQ, Cattell,
1958, 1969). This is a junior version of his well-known "16PF"
designed to "measure” 14 personality factors. The reported intraclass
correlations, sample sizes, and within mean squares, and the recom-
puted between mean squares are’ given in Table 1B (Columns 1-6). Of
particular interest is "Factor B" (test number 2 in Table 1B), because it
is an abbreviated, unspeeded “Intelligence Test".

Altogether we deal with 5 data sets: two for the Jenkins test (denoted
JM for males, JF for females), and three for Cattell's HSPQ (HW for
the white sample, HB for the black sample, and HT for the total, pooled
sample). The most striking aspect of all of them is the large proportion
of inadmissible heritability ratios HR, which are summarized in Table
2. Overall, only a fourth of the values lie between 0 and 1, the majority

(60%) are larger than 1.
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sample sizes (Number of pairs).

Note: v(g) = var(g), etc.; Ny Np
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As noted above, a case can be made only for HR, since Holzinger's
h2 is not a valid heritability estimate under any conditions. However,
.the case for HR remains cogent only as long as the model from which it
is derived, the model AG3, describes the data. The high proportion of
inadmissible HR already suggests that this genetic model may not
describe Osborne's personality data very well.

Qualitative comparison of AG3 with E3: Closer scrutiny of the viola-

sions of. the qualitative restrictions implied by AG3 confirms this first
impression. These violations are tabulated in Table 3.

TABLE 3. Proportions of violations of ordinal predictions.

iM.tp <0 MSWD < rp<rp/2 MSBM+MSWM
MSWM <MSBD+MSWD
Observed
M 32 37 79 21
JF 13 47 53 26
HW 29 .14 71 1.00
HB Q7 .36 61 34
HT 14 .07 43 79
ALL 18 .30 59 49
Predicted
AG3 0 0 0 .5
E3 0 5 - 0

(a) Column 1 in Table 3 gives the proportion of violations of the
weak conditions ppy = 0, pp = 0, which apply to both AG3 and E3.
Qverall, they are violated in 18% of all 160 cases. Most of the
violations occur for rp in the JM group, suggesting that, for most of the
variables, pp is zero in this group.

(b) Column 2 gives the relative frequencies of negative values for the
difference MSWD-MSWM. Under AG3, this difference should be non-
negative, ‘since it estimates var(a)/2. Under E3 it should be zero,
because both MSWM and MSWD estimate the same error variance,
var(z). Overall, this difference is negative in 30% of all 80 cases, a per-
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centage halfway between 0, as predicted by AG3, and 50, as predicted
by E3.

(c) The model AG3 predicts that MSB-+MSW should be the same for
both twin types, while model E3 predicts that it should be larger for the
MZs. The average proportion of MSBM+MSWM < MSBD+MSWD
(column 4), 49%, is misleading, because of systematic violations of the
equality prediction within subgroups. For both sets of the Jenkins data,
MSBM-+MSWM > MSBD+MSWD in 3/4 of all cases, favoring E3.
In the HB group, this percentage is 64%. In the HW group, it is one,
contradicting both AG3 and E3. If one takes the average magnitude of
the contrasts (MSBD +MSWD)-(MSBM+MSWM) into account, this
comparison favors E3: For JM and JF this average is -11.6 and -9.1.
For the three HSPQ sets, it is 3.6, -1.2, and 1.2. Allowing for the fact
that the mean squares for the Jenkins data are on average twice as large
as those for the HSPQ, one finds that the equality predictions of AG3
are more severely violated by the Jenkins data in the direction predicted
by E3 than the ordinal predictions of E3 by the HSPQ data. *

(d) The strong constraint rp > rp/2 that AG3 imposes on the data is
violated in 59% of the cases overall (column 3 of Table 3). Concretely,
this means that MZs are more similar to each other than AG3 allows.
Since E3 is non-committal on the relative magnitudes of ry and rp, this
outcome also favors E3.

All in all, these preliminary qualitative checks suggest that the
environmental model E3 will fit the Jenkins data much better and the
HSPQ data at least moderately better than does the genetic model AG3.-

Quantitative comparison of AG3 with E3: To check this conjecture,
AG3 and E3 were fitted to all 5 data sets by least squares with the
desipn matrices given in Appendices A3 and A4. The resulting least
squares estimates (LSEs) for var(a), var(e), var(z) under AG3 are
presented in columns 7-9 of Table 1; those of var(em), var(ep), var(z)
under E3 in columns 10-12. Inspection of the LSEs reveals that many
more variance eslimates are negative under AG3 than under E3. The
proportions of inadmissible variance estimates are summarized in Table
4.

In particular, the majority (60%) of the LSEs of the environmental
variance component, var(e), are negative. Inspection of the actual LSEs
in Table 1 shows that they are often substantially negative. The average
magnitude of the negative estimates of var(e) is 5.39. This echoes simi-
lar findings reported in (Schénemann, 1990) for Shields' MZA/MZT
data which included two cognitive tests. In the present MZ/DZ study,
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25% of all variance estimates are negative under AG3, compared to TABLE 5. C°““ﬁ‘,‘:ﬂ;§f,:',',,§f,gﬁﬁf,ﬁ§?‘f;;'f"dd AG3 versus
only 14% under the environmental model E3, Similarly, the average

magnitude of all negative variance estimates is 3.68 under AG3, while
E3 reduces it to 1.17 (Table 4). While small negative LSEs are to be ex-
pected when the underlying parameter is close to zero, the consistently Variable Study

negalive estimates of the magnitude encountered with these data strongly . -

suggest that the model AG3 underlying HR is inappropriate for these M JF HW HB HT

data. e e € ©E ¢ °E G °E G CB

TABLE 4. Proportion of inadmissible (negative) variance estimates. 1 64 .01 33 .02 176 .05 06 .01 16 .03

2 30 .01 A0 .00 31 .02 02 .03 01 .01

Genetic Model AG3 Environmental Model E3 3 03 .00 .02 .0t 00 .00 .18 .01 00 .00

' 4 03 .04 .08 .04 30 .07 .06 .00 01 .00

Swdy n o va)  var@) var))  varle)  varep) ver® s 3 0 .2 o1 13 04 00 00 .00°.00

: 6 12 00 .36 .00 117 .06 .00 .01 g1 .02

M 19 .05 (1.79) .19 (8.75) .00 A1 (12.51) 47 (1.60) .00 7 48 .00 03 .00 132 .05 24 .02 25 .0t

IE 19  .26(3.44) .53(6.20) .00 21(1.71) .16 (.88) .00 8 ‘00 .00 51 .03 00 .00 .98 06 21 .0t

' 9 23 .00 .01 .02 00 .00 01 .00 .00 .00

HW 14 .36(2.94) .50(4.64) .00 43 (1.68) .00 .00 10 ‘01 .00 ‘03 .00 071 .06 00 .00 o1 .02

HB 14 07(.37) 64240 .00 21 (.33) .14(L18) .00 10 %3 00 8 02 42 04 02 00 01 .00

HT 14 14 ( .81) 43 (3.46) .00 29 (.91) .07( .16) .00 12 07 .10 03 .0t 02 .02 02 .0} 02 .04

13 .09 .00 .00 .00 49 05 .01 .00 A5 .01

ALL 80 .20(1.96) .59 (5.39) .00 .24 (1.51) .19 (.82) .00 14 19 .01 02 .00 04 .01 12 .01 07 .01
: i 15 .00 .00 73 .03
Average magnitude _ " so ol o1 00
over studies and (3.68) (1.17) 17 '45 '03 .36 '00
parameters 8 01 .00 .14 .00
Fit fatio AG3/E3 3.15 19 59 .01 .03 .01

i : : : ALL 25 .01 17 .01 29 .03 12 .0t .09 .01
Note: -average magnitude of negative variance estimates in parentheses.

Relative fit ratios:

: . . . , egleg 250 17.0 9.7 12.0 9.0
Overall, in terms of proportion of negative variance estimates, the

environmental model fits better by a factor of 1.8. In terms of the Overall it ratio across all tests and groups: eg/eg = 13.9

average magnitude of negative variance estimates, E3 fits better by a
factor of 3.2 (Table 4). '

I . . . . Notes: eg = eg'egly'y = 1 -n2 under AG3
Quantitative fir: Since a variance cannot be negative by definition, g =eg'eglyy = 1 - 52 under E3
the only inference a negative variance estimate permits is that the
) 4 4 3 i i least squares fit of AG3 to the mean
underlying population parameter 1s zero. Hence, before the relative fit . Les &G I8 the residual vector afler the .

p : . . square criterion vector y, and eg is the LS residual vector after fitting E3 to the
of both models can be evaluated, all negative variance estimates must mean squares in y, after all negative variance estimates were replaced by zero.
first be replaced by zero.
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Once this is done, one obtains the 1-n2 values in Table 5 (1-y2 :=
e'e/y'y, wiere now y denotes the criterion vector of the mean squares,
and e the least square residual vector). These values are abbreviated
"eg" under AG3, and "eg" under E3. In terms of the fit ratios eg/eg,
the environmental model E3 fits the JM data better than the genetic
model by a factor of 25, and the JM data better by a factor of 17. For
HW, HB, and HT, the fit ratios favoring the purely environmental
model E3 are 9.7, 12, and 9. The average fit ratio eg/eg over all 5
studies is 13.9.

5. DOMINANCE MAY INFLATE HR

As was shown in section 2, Nichols' HR is a valid deduction from
the strictly additive genetic model AG3. However, we found empirically
(a) l!lat, this model does not fit Osborne's data, and (b) that HR tends to
be Qlased upward, i.e., an excessive proportion of HRs exceed 1. In this
section, an attempt will be made to reconcile these two findings by
embedding the strictly additive model AG3 into a more comprehensive
genetic model which provides for dominance.

This model is a variant of a model Fisher developed in (1918) to
separate additive gene action from dominance and other non-additive
gqnelnc factors (see, e.g., Harris, 1965; Falconer, 1960; McGuire &
Hirsch, 1977). If one assumes that all interactions and the gene/environ-
ment correlation are zero and adds measurement error, then one arrives
al a variant of Fisher's model, DG4, which contains 4 parameters:

(a) the variance, var(a), of the additive values a of gene action,
(b) the variance, var(d), of the dominance deviations,

~ {c) the environmental variance, var(e), and

(d) l!\e variance of the measurement error, var(z).

Fisher partitioned the total genetic variance, var(g), into two compo-
nents, the additive part, var(a), and the dominance part, var(d). The
notion of dominance is most easily understood in the special case of one
gene locus with two alleles, a and A, giving rise to three genotypes, aa,
aA, a‘nd AA. Disregarding all non-genetic factors, if the phenotypic ex-
pression y of the heterozygotes aA is exactly halfway between those of
the two h.omozygotes, aa and AA (so that | y(aa)-y(aA) | = | y(AA)-
y@A) | if |aa-aA| = | AA-aA | on the abscissa), then gene action
is called "additive". For example, if a is the gene for white and A the
gene for red, then y(aA), the color of a cross between aa and AA
flowers may be pink. If y(aA) is reddish pink, then A is "partially
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dominant” over white, and if y(aA) = y(AA), i.e., pure red again, it is
said to be "completely dominant.”

To measure the degree of dominance, Fisher fitted a regression line
to the three phenotypic expressions, y(aa), y(aA), and y(AA) (see, e.g.,
Harris, 1965, p. 84, and MacGuire & Hirsch, 1977, for a numerical
illustration). The three predicted values ay on this line are the "additive
genetic values” and the three deviations from this line are the "domi-
nance deviations”, dy. As a consequence of the least squares definition,
the additive values a are uncorrelated with the dominance deviations d,
so that g := a + d implies var(g) = var(a) + var(d).

This reasoning can be extended to N > 1 loci with more than two
alleles. However, in this case, two loci may interact.

If one is willing to ignore this and other complications, then the
partition of the total genetic variance var(g) can also be computed for
relatives with partial genetic overlap due to various degrees of common
ancestry, such as fraternal twins, half-sibs, nephews, etc. The genetic
covariance cov(gy,gg) for two relatives can then be written as a linear
combination of var(a), var(d):

cov(gy,82) = wyvar(a) + wyvar(d),
where the "co-ancestral coefficients” (Malecot, 1969; Harris, 1965, p.
86) w,, wq reflect the degree of genetic overlap. As long as all other
variables entering the observed phenotypic values yy, y, are uncor-
related with a and d (and hence g), this covariance equals the
phenotypic covariance, cov(yy,y2)-

For MZs, these coefficients are w, = wy = 1, because they share all
genes. Hence, for MZs, the model DG4 postulates

MZs: yp-p=a+d-+e+z, y2-p=a+d+tetz
with E(a,d,e,z;,2z) = 0, and

Var(a,d,e,zq,23) = diag[var(a),var(d),var(e),var(z‘),var(zz)],
(left side of Fig. 1C). By Al, the expected mean squares for the MZs
are, therefore, '
E(MSBM) = 2var(a)+2var(d) +2var(e) +var(z), E(MSWM) = var(z),
and the intraclass correlation is

ppm = [var(a)+var(d) +var(e)}/[var(a) +var(d) +var(e) +var(z)].

For fraternal twins, the co-ancestral weights are w, = 1/2, wg = 1/4
(see Harris, loc. cit.), so that

cov(gy,gp) = cov(a;+dy,az+dy) = var(a)/2 + var(d)/4.
Hence, the model for the DZs is:

DZs: yj-p=ay+dyt+etz, yr-p=a +d, + e+ 1,
with cov(aj,a;) = var(a)/2, cov(dy,dy) = var(d)/4, while all other
variables remain uncorrelated (right side of Fig. 1C).
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Therefore,

E(MSBD) = 1.5var(a) + 1.25var(d) + 2var(e) + var(z)
E(MSWD) = .5var(a) + .75var(d) + var(z),
pp = [.Svar(a)-+.25var(d) +var(e))/[var(a) +var(d) +var(e) +var(z)].

Since g = a-+d is uncorrelated with e and z, one also finds

cov(g),g2) = cov(yp,y2) = E(MSB-MSW)/2.

On making this substitution, one arrives at the expected within mean
squares and covariances given by Falconer (1960, p. 184).

One again finds that Holzinger's h2 (and, hence, Vandenberg's F,
which is simply a monotone function of it) estimates nothing of value,
because it does not depend on var(e).

On inspecting the design matrix for this model,

2 2 2 1
0 0 0 |
1.5 1.25 2 1
5 15 0 1

one finds that it has rank 3, since the sum of the first two rows equals
the sum of the last two rows. Hence, the parameters var(a), var(d),
var(e), and var(z) are not estimable from MZ/DZ data alone. However,
the linear combinations
var(z), var(a) + 1.5var(d), and var(a) + var(d) + var(e),

are estimable, because their coefficient vectors are in the row space of
the dusign matrix. To eslimate all four parameters of this model would
require additional data from other relatives, e.g., half-brothers or half-
sisters, or adopted children raised in the same environment, so that the
augmented design matrix acquires full column rank.

For our present purposes, it suffices to note that this model contains
the strictly additive model AG3 as a special case for var(d) = 0. This
can be seen algebraically by deleting the second column of the design
matrix of DG4, and graphically by deleting the broken arrows in the
two diagrams for DG4 (Fig. 1C), which leads back to AG3 (Fig. 1A).
Under DG4, one finds for Nichols' HR,

HR := 2(py - pp)/om = var(a)+1.5var(d))/ [var(a)-+var(d) +var(e)]
which is larger than
var(g)/[var(g)+var(e)] =: hg,
the "broad heritability" (where g := a+d) if var(d) > 0.

In other words, while Nichols' HR is the correct expression of
narrow (and hence broad) heritability when there is no dominance (i.e.,
under AG3), it will overestimate broad heritability if there is partial
dominance. This might explain the consistently upward bias of HR.
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6. DISCUSSION

We are thus left with the overall conclusion that the strictly additive
genetic model AG3 needed to justify Nichols' heritability estimate HR is
incompaltible with Osborne's data, so that the HRs are empirically
meaningless. The consistently better fit of the purely environmental
model E3 could mean that most personality tests contain no genetic
components at all, confirming Jones' (1946) hypothesis that the greater
similarity of the MZs relative to the DZs on personality tests is due to
additional environmental variance induced by the preater physical
resemblance of MZs. Because they look more alike, they are treated
more alike than the DZs. While a descriptive variance component model
can never prove such a causal relationship, Osborne's personality data
are at least consistent with it.

Although these specific conclusions are limited to Osborne's
personality data, the basic principles we used to arrive at them are
relevant more generally: Since all descriptive models are to a large
extent arbitrary, it is critical that the underlying assumptions are made
explicit so that they can be tested empirically. Failure to do so
engenders the risk of interpreting parameter estimates (e.g., HRs) which
are empirically meaningless, and hence substantively misleading,
because the data do not fit the model from which they were derived:
“Unfortunately many...working on IQ are so involved in the model-
game that they pay little attention to the data they put in them®
(Roubertoux & Capron, 1990, p. 564; see also Kempthorne, 1990, p.
139).

In the present case, we found that most of the assumptions of the
variance component model needed to justify HR as a valid heritability
estimate were violated by Osborne's data. In particular, we found that
the prediction rp 2 ry/2 was often violated, i.e., concretely, that the
similarity of the MZs exceeds that of the DZs to a larger degree than the
genetic model allows. Consequently, most of the estimates of var(e)
were negative and many HRs exceeded 1. If we had ignored these
systematic violations, we might have concluded that narrow heritability
is 1 for most of the personality tests. However, once we recognized the
violations and found that a purely environmental model fit these data
much better, we were led to the opposite conclusion, namely that broad
heritability is zero for these data.

Of course, these general principles also apply to heritability ratios of
1Qs. So far as we know, the popular belief that 80% of the IQ variance
is genetic rests on heritability estimates unsupported by any evidence
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that th(? underlying models actually fit the dala. Unless these
assumptions are checked, and the fit of genetic models is fairly
compared with the fit of competing environmental models, no one can
know whether the heritability figures for 1Q are any more valid than
those for personality tests. (see also Schonemann, 1989, 1990,
Schénemann & Schénemann, 1991). , '
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APPENDIX 1. Twin data, intraclass correlations, and mean squares

IFY := (yi) is an Nx2 table of scores for N twin pairs, and ¥ :=
oL .yik/ZN is the overall mean, then the conventional sums of squares
are given by

SSB = Li (yi; + Yiz - 22, SSW = I; (yi1 - ¥i2)>
' ' 1 - Yia)*2,
i.e., by 'ha\.lf the sums of squares of the row sums?ancll rowI differences of
the devnagon score matrix around the grand mean, as was shown in
more detail in (Schénemann, 1990).

For the del:iva(ions of the expected mean squares, the following well-
known -result is used repeatedly:

If x is an N-variat.c random vector with E(x) = ¢ and Var(x) = o2y,
and P = P2 = P' is an NxN idempotent matrix of rank r, then the
quadratic form q := x'Px has expected value E(g) = ro2. (Since
E(pyjxixj) = 0 for i#j, E(L; piixi2) = o2 trace(P), and trace(P) = r.)

In the populatlon, an intraclass correlation can be defined in several
ways, e.g., in terms of expected mean squares as

o pi= E(MSB - MSW)/E(MSB + MSW),
which is the definition we use throughout this paper.

APPENDIX 2. Holzinger's derivation of h2

This section briefly sketches an argument develo i
(Schoénemann, 1989). s ped more fully in

T(? derive his heritability ratio h2, Holzinger (Newman, Freeman, &
Holzinger, 1937, pp. ?4-116) started out with a variance component
model for the MZs »'vhxch postulates 4 latent variables, g (genetic com-
ponent), e, e, (environmental components), zi, and z; (measurement
errors):

MZs: y1-p=pg+e +1z4 Yo-p =
o ) 2-p=gtetz

v_v‘her.e [T I_E(yk), E(g) = E(ep) = E(z) = 0 and Var(g,e(,€2,21,27)
= diagonal (i.e., all latent variables are uncorrelated) and var(zy) =
var(z), var(ey) = var(e). However, halfway through his derivations,
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Holzinger discarded the imeasurement error variables by setling var(z) =
0 (p. 113). Therefore, the model he actually worked with predicts
E(MSBM) = 2var(g) + var(e), E(MSWM) = var(e),
py = var(g)/[var(g)+var(e)],
and the broad heritability hg is simply given by the intraclass correlation
of the monozygotic twins, a fact Holzinger overlooked. Instead, he went
on to postulate a variance component model for the DZs to be able to
define his heritability ratio as h2 := (oM - pp)/(1 - pp). After again
dropping the measurement error variable z, he described the DZs with
DZs: yi-p=g1+e, Y2-p=8tc

He again assumed that all variables on the right of the equality signs
are uncorrelated within twin types. However, he did not spell out the
critical correlation between the two genetic variables gy, 2. Suppose it
is given by pya. Then, by Al

E(MSBD) = (1 + p1pvar(g) t+ var(e),
E(MSWD) = (1 - pip)var(g) + var(e)
pp = pravar(g)/[var(g) +var(e)l.
This implies that his heritability coefficient can be written
W= (pMz'pD/(l"pD) = (l-plz)var(g)/[(l-pn)var(g)+var(e)].

On setting h# = var(g)/[var(g) +var(e)], one obtains
pipvar(g)var(e) = 0, so that py3 =0 if both variances are nonzero. As
a result, pp = 0. The necessary condition that pj, = O violates the
basic assumption of genetic theory that dizygotic twins, on average,
share half of the genes.

APPENDIX 3. The strictly additive genetic variance
component AG3

This model is an adaptation to MZ/DZ data of the model Jinks and
Fulker (1970; s.a. Schonemann, 1990), used in their reanalysis of the
Shields MZA/MZT data. Following Jinks and Fulker, we will present it
here in purely statistical terms. As shown in the text, this model is a
variant of Fisher's (1918) model if the gene/environmental correlation,
interactions, and dominance are all zero. The model AG3 postulates 3
classes of latent variables for MZs and DZs reared together: strictly
additive genetic variables a, environmental variables e, and
measurement error z. The structural part for the MZs is

MZs: y;-p=a+tet+zg y-p=atetz,
with E(@) = E(e) = E@z) = 0 and Var(a,e,zy,z;) = diagonal as
stochastic restrictions. Note that now, in contrast to Holzinger's model,
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the environmental variable e is constant within families (since both
twins are raised together), so that e and z are no longer confounded. By
A1, this implies for the MZs
E(MSBM) = 2var(a) + 2var(e) + var(z), E(MSWM) = var(z),
oM = [var(a)+var(e))/ [var(a)+var(e) +var(z)].
For the DZs, this model postulates -

DZs: y;-p=a; +e+z, yo-p =2 t+e-t 2z,
where the latent variables again have zero means, and

Var(ay,a,,€1,62,21,Z3) = diagonal except for cov(ag,ap).

Since dizygotic twins, on average, share half the genes, the correla-
tion p;, between a; and a, is 1/2, by the correlation formula for com-
mon elements (Hogben, 1950, p. 360f). Therefore,

E(MSBD) = 1.5var(a)+2var(e) +var(z),
E(MSWD) = .5var(a)+var(z),
Pp = [.5var(a) +var(e)}/[var(a) +var(e) +var(z)],
so that pp-pp = .Svar(a)/[var(a) +var(e) +var(z)]. Hence
HR := 2(pp-pp)/pM = var(a)/[var(a)+var(e)],
is the narrow heritability ratio under AG3. In contrast, Holzinger's

' W2 ;= (pp-pp)/(1-pp) = .Svar(a)/[.5var(a)+var(z)]
measures nothing of interest, because it does not contain the environ-
mental variance, var(e).

It is important to note that AG3 implies a number of conditions
which should be checked before relying on HR: The relatively weak
prediction 0 < pp < py < 1 is met by most MZ/DZ data. In contrast,
the stronger predictions

(a) E(MMSWD-MSWM) = var(a)/2 = 0,
(b) E(MSBM+MSWM) = E(MSBD+MSWD),
(c) E(MSBD-MSWD) - E(MSBM-MSWM)/2 = var(e) = 0,
(d) pp = pM/2,
are often violated. When they are, all parameter estimates, including
HR, are of course meaningless, because they are derived from a model
which does not fit the data.

The linear model for fitting AG3 to the observed mean squares by

the method of least squares is

MSBM 2 2 1 var(a)

MSWM | = 0 0 i (var(e) ) + error
MSBD 1.5 2 1 var(z)

MSWD \ .5 0 1

Since the coefficient matrix has rank 3, the LSEs are unique.
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APPENDIX 4. A 3-parameter environmental model E3

To obtain a model which predicts larger intraclass correlations for the
MZs than for the DZs, we postulate two environmental variables: an
environmental baseline variable ep which enters the scores of both MZs
and DZs, and a second component €y which contributes only to the
scores of the MZs, thus raising their environmental variance. In
addition, we again postulate a measurement error variable z. Thus, we
postulate for the »

MZS!yl-#=Cm+CD+Z1, y2-p=eM+eD+z2
E(eM:eDrzl’zZ) = ¢, .
Var(em,ep,z1,22) = diagonal with var(zy) = var(z,),

DZs: yy-p =ep +z;, Y2-# =¢€p T 2 ‘
with the same stochastic restrictions on the remaining variables as for
the MZs. By Al, this model implies , '

E(MSBM) = 2var(ey) + 2var(ep) + var(z), E(MSWM) = var(z),

E(MSBD) = 2var(ep) + var(z), EMSWD) = var(z),
and, hence,

E(MSBM+MSWM) = E(MSBD+MSWD)
E(MSBM-MSBD) = 2var(ey) = 0,
E(MSWM) = var(z) = E(MSWD),
12 pm = [var(eM)+var(eD)]/[var(eM)+var(eD)+var(z)]
= var(eD)/[var(eD)+var(z)] = pp = 0.
The linear model is :

MSBM 2.2 1 var(ep)

MSWM |} 0 0 1 (var(eD) ) + error
MSBD 0 2 1 var(z)

MSWD 0 0 1

The LSEs are again unique.
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