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Abstract

New results are given concerning a form of test bias which, in the past,
with few exceptions (esp. Cole, 1973; Hartigan & Wigdor, 1989),
seems to have been largely ignored. We call it "hit-rate bias" because it
is defined as the discrepancy between the hit-rates (= probability that a
qualified testee passes the test) in a low- and a high-scoring group.
Typically, it favors the high-scoring group. In contrast to Cole (1973),
our focus is on binary criteria, such as college graduation. In the f irst,
theoretical part, we present a (Hit-Rate Bounds) Theorem which under-
scores that raising predictor standards is not equivalent to raising crite-
rion standards, as some believe. Instead, it typically increases hit-rate
bias. We then derive and tabulate a simple approximation for estimating
hit-rates as a function of validity, base-rate, and admission quota. In the
empirical portion of the paper, we evaluate the extent of hit-rate bias in
practice by re-analyzing a number of data sets involving the SAT, the
ACT, and the GATB. Finally, we discuss how the addition of test
scores to high school record affects hit-rate bias in predicting college
graduation. We find it increases the bias.
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INTRODUCTION

Although the problem of test bias has received considerable attention
in recent decades, "there has been little agreement about what consti-
tutes bias" (Cole, 1973, p. 237). In her paper, Cole discussed six differ-
ent prediction models, each of which implies a different conception of
bias, and its converse, fairness. In one of them, the Conditional Prob-
ability Model, "fairness" is defined as the equality of two conditional
probabilities: equally qualified candidates in terms of criterion per-
formance should have an equal chance of passing the test regardless of
group membership. We agree with Cole that this is ""an intuitively
meaningful and defensible type of fairness" (p. 254), and with Hartigan
and Wigdor (1989) that it would be unfair "to place the greater burden
of prediction error on the shoulders of the lower scoring group” (p.
258). In this paper, we present some new theoretical and empirical
results bearing on this particular bias problem.

In accord with conventional Signal Detection Theory, which defines
"Hit-Rate" as the conditional probability that a device correctly iden-
tifies a signal, we refer to this type of bias as "Hit-Rate Bias". In this
instance, the signal to be detected is a qualified testee, and the device is
the mental test. Our focus — in contrast to Cole's (1973) and Hartigan
and Wigdor's (1989) — will be on binary criteria, specifically, on col-
lege graduation, which is of considerable practical interest. Binary (truly
dichotomous, as opposed to dichotomized) criteria have an additional
advantage of being unambiguously defined, thus obviating quibbles
about proper cut-offs to define "qualified" and "unqualified" subjects.

We shall usually communicate our numerical results as percentages
rather than probabilities. To avoid ambiguity, we always use capital let-
ters for percentages, reserving lower case letters for analogously defined
probabilities. Thus, a "Hit-Rate" (HR) is the conditional percentage,

HR := 100 Prob(subject passes test | subject will graduate) )
The vertical stroke, "|", is read "given that". We denote a "Hit-Rate
Proportion”, HR/100, by "hr". By "Hit-Rate Bias" we mean consistent
hit-rate differences between two groups, an "Advantaged (e.g., high
income) Group", and a "Disadvantaged (low income) Group". To mea-
sure the extent of the bias, we shall use the "Hit-Rate Bias Ratio"
(HRB),

HRB := HR(Advantaged Group) / HR(Disadvantaged Group) )
If this ratio is 2, then for every one qualified testee of the disadvantaged
group passing the test, two qualified testees of the advantaged group
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will pass it. To anticipate, we will find that for White/Black compari-
sons, HRB is usually in the neighborhood of 1.7. Concretely, this means
that qualified Blacks (those who would graduate if they were admitted),
face steeper odds of being admitted than qualified Whites. ’

We should note that, in one sense, this type of bias is no-one's fault,
because it is a direct mathematical consequence of the configuration
sketched in Figure 1. The underlying assumptions are:

(a) The advantaged group outscores on average — for whatever
reasons — the disadvantaged group both on the test and on the criterion;

(b) The test has imperfect predictive validity;

(c) The same cut-off, c, is used for both groups to define "pass”.

cut-off

Test Score

Advaritaged Disadvantaged
Figure 1. Distribution of test scores for advantaged and disadvantaged groups.

Notes: The solid distributions represent qualified subjects for both the advan-
taged and disadvantaged groups. The dashed distributions represent unqualified
subjects for both the advantaged and disadvantaged groups.

If these conditions are met, as they often are, then it is intuitively
obvious from Figure 1 that the proportion of qualified members passing
the test will be smaller for the disadvantaged than for the advantaged
group, and that the proportion of unqualified testees passing the test will
be larger for the advantaged than for the disadvantaged group. In short,
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low validity tests favor advantaged groups at the expense of disadvan-
taged groups. ‘

We agree with Cole (1973) and Hartigan and Wigdor (1989) that this
constitutes a form of bias which deserves more attention than it has
received so far. If it is ignored, then it will aggravate existing social
polarization by placing additional hurdles in the path of disadvantaged
groups seeking equal economic opportunity.

Cursory study of Figure 1 also shows that the extent of this type of
bias worsens as the cut-off, ¢, is raised in the mistaken belief that this is
equivalent to "raising standards”. Instead, as Figure 1 clearly shows,
raising predictor cut-offs tends to eliminate a higher percentage of quali-
fied members of the disadvantaged group than qualified members of the
advantaged group, thus aggravating hit-rate bias. In this paper, we will
sharpen these observations and assess the extent of hit-rate bias in
practice.

BASIC DEFINITIONS: BASE-RATES, QUOTAS,
AND HIT-RATES

We defer all derivations and proofs to the Appendices, leaving it up
to the readers to consult them at their own discretion. Here we only
review a few technical terms needed for understanding the body of the
paper. They are summarized in Table 1. Whenever one has to choose
between two uncertain events, four possible outcomes can occur, as
shown in Table la. Two of the choices are correct and two of the
choices are errors: "Qualified" subjects (g) who pass the test are called
"Hits" or "True Positives”. We denote their frequency "TP". Qualified
subjects who fail the test are called "Misses" or "False Negatives" (FN).
Unqualified subjects who fail the test are called "True Negatives" (TN),
and unqualified subjects who pass the test are called "False Alarms" or
"False Positives" (FP). Now let TOTAL := TP+TN+FP+FN be the
total frequency. We call the percentages

BR := 100 (TP+FN)/TOTAL 3)
the "Base Rate", and
Q := 100 (TP+FP)/TOTAL @)

the (admission) "Quota" of the test. The corresponding proportions,
when needed, will be written "br" or "¢". The Total Percent Correct
(Validity Rate, in some ‘of the older literature),

%C = 100 (TP+TN)/TOTAL, )
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will be used as an intuitively straightforward measure of the predictive
quality of a test. One obtains Table 1b by normalizing the columns of
Table 1a. The resulting conditional percentages have special names:

The "Hit-Rate",

HR := 100 TP/(TP+FN) = 100 Prob(Pass | Graduate), 6)
and the "Miss-Rate”,
MR := 100 FN/(TP+FN) = 100 Prob(Fail | Graduate). @)

Note that HR+MR = 100. Similarly, from the first column of Table la,
one obtains the analogous percentages for the unqualified groups:
The "True Negative Rate”

TNR := 100 TN/(FP+TN) = 100 Prob(Fail| Drop out), )
and the "False Positive" or "False Alarm Rate",
FR : = 100 FP = 100 Prob(Pass| Drop out). %)

They also sum to 100. We denote the corresponding proportions "hr",
"fr", "q", and "br". In statistics, hr is called "power" and fr "signif-
icance level”.

TABLE 1.
Definitions and notation.

Our notation is designed to assist nonspecialists by retaining symbols
suggestive of the content. Our terminology is imported from signal detection
theory. Statistical test theory employs a parallel set of terms. The definitions
refer to the following joint frequency table:

Table 1a. Joint frequency table.

Criterion (usually: graduation)

Decision Did Not Graduate (NG) Graduated (GR)

Pass Test False Positives (FP) True Positives (TP) FP+TP
P) ("False Alarms™) ("Hits")

Fail Test True Negatives (TN) False Negatives (FN) TN+FN

F ("Misses”)

FP+TN TP+FN TOTAL
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From the joint frequencies Table la, three percentages can be derived which
will be used throughout this paper:

Quota = Q := 100 (FP + TP) /| TOTAL (T1.1)
Base Rate = BR := 100 (TP + FN)/ TOTAL (T1.2)
Total Percent Correct = %C := 100 (TP + TN) / TOTAL (T1.3)

Table 1b. Conditional percentages.

Table 1a can be converted into a table of conditional probabilities by dividing
the elements in each column by their respective column sums. For conve-
nience, the resulting fractions will be transformed into conditional percentages
by multiplying them by 100. One thus obtains

(Column) Conditional percentages

NG GR

False Alarm Rate (FR) Hit-Rate (HR)
True Negative Rate (TVR) Miss-Rate (MR)

ol -]

100% 100%

The definitions of the terms in Table 1b are as follows:

Hit-Rate = HR := 100 TP / (TP + FN) (T1.4)
Miss-Rate = MR := 100 FN / (TP + FN) (T1.5)
False-Alarm-Rate = FR := 100 FP / (FP + TN) (T1.6)

Lower case abbreviations (%c, hr, mr, fr, tnr, q, br) will be used to denote the
corresponding proportions:

Joint proportions Conditional proportions
fp tp | g fr hr
tn fn | Iq tnr mr

I-br br | 1 I 1
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HIT-RATE BOUNDS THEOREM

"Calling hr a "Hit-Rate Proportion”, we assert:
A Hit-Rate Proportion never exceeds the ratio of the Quota over
Base-Rate:

hr < q/br (10)

While the proof (given in Appendix 1) is straightforward, the result
merits attention because it bears directly on the widespread, yet errone-
ous, belief that raising test cut-offs (e.g., of the SAT or ACT) is equi-
valent to "raising standards”. The theorem shows that this is a fallacy
because raising test cut-offs will introduce largely more misses, €spe-
cially for larger base-rates and low validity tests. To illustrate this point,
suppose that the BR is 80% and the selected cut-off results in a quota
(Q) equal to 60%. Then the largest possible hit-rate is 100(60/80) =
75%. 1f we raise the cut-off to reduce Q to 40%, then the hit-rate
cannot exceed 50%. For an even "higher (admission) standard” of 20%,
the hit-rate remains below 25%.

The fallacy results from confusing test performance with criterion
performance. This is an easy mistake to make, because psychologists
are usually quite cavalier in their use of the loaded term "measure”.
They claim IQ tests "measure intelligence"”. However, when pressed,
they cannot even define "intelligence" (e.g., "The fact that the concept
of intelligence is at present not clearly defined is not troublesome",
Jensen, 1983, p. 314). As long as the validity of a test is below 1, it
never "measures” the criterion. It only measures itself, in the sense that
it produces a numerical score which reflects the test performance. This
score may or may not be useful for estimating criterion performance
which is entirely different from measuring it. In particular, if the test
validity is low, as it usually is, then the criterion ‘estimate will be poor,
even if the criterion — in our case college graduation — can be measured
with perfect accuracy on a binary scale: either the student does or does
not graduate. The semantic gap between test performance and criterion
performance widens in direct proportion to the decline in validity. This
is why raising predictor standards in no way is equivalent to raising
criterion standards. For low validity tests it usually just makes it harder
to estimate the criterion.
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APPROXIMATE HIT-RATES AS A FUNCTION OF
VALIDITY, BASE-RATE AND QUOTA

For strictly binary criteria, such as college graduation, the validity is
given by the Point Biserial Correlation, pb Which, in the present con-
text, can be written

oy =d’ vVbr(1-br), (1)
where d' := (uq - py)lo denotes the standardized mean difference,

familiar from signal detection theory, between the conditional distribu-
tions of the qualified and the unqualified subjects, and br is the base-rate
proportion (: = BR/100).

Equation 11 can be used to express hr and br implicitly. Cursory
experimentation suggests an iterative solution may not be easy. It is,
therefore, of considerable practical interest to know that simple, explicit
approximations for HR and FR can be obtained by linearizing the
cumnulative normal distribution in its middle range (around 50%). We

- found these approximations are quite close to the true valiues over the
parameter range normally encountered in practice (.3<br, g<.7,
r<.5). As shown in Appendix 2, such linearization leads to

hr=q+ rvyQ-bribri3 (12)
and
Jr=q-r~bri(l-br) / 3. (13)

Simulations showed that 98.8% of the estimates of hr fall within .04 of
the true values. Qutside the range stated above, the accuracy falls off.

The first two column blocks in Table 2 indicate the robustness of our
hr approximation for various values of g, br, and r. The header values
for r (.1 to .5), together with the stated values for ¢ and br, were used
to approximate Ar and fr according to the above linearized formulae. We
then converted these conditional proportions into joint proportions from
which we computed the phi-coefficients shown in the first column block
of Table 2. The second block gives the approximations for the point-
biserials based on the approximate Ar's and fr's. On comparing them
with the generating values listed as column headings, one finds that the
linearized approximations reproduce the generating values closely.

As a fringe benefit, one further finds that the point-biserial
correlation can be approximated over the same range by

'nb = 3 N(gfr)(hr-q). (14)

This obviates the need for normal tables to find point-biserial validities
in the lower range.
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Table 2.
Robustness indices, ¢ versus 7y, and Base-Rate Problem.

Phi (¢) Point-biserial (rpb) %¢c - max(br, 1-br)

br q r .1 23405 12345 1.2 3 4 5
3 3 .12 3.4 123435 -1-1 0 0.0
4 1.1.233 12334 -1 -1-1 .0 .0

5 1.1.233 12334 -2 -1-1-1.0

.6 1.1.2.33 12345 22 -2-1 -1 -1

N 11234 12.3.5.6 -3-2-2-2-1

4 3 1.1.2.3.4 123405 0 .0 0 .1 .1
4 1.1.233 12334 0 0 0 .1 .1

.5 1.1.2.33 d12.2.34 -1 .0 0 0 .1

.6 11233 12345 1-1.0 .0 .0

N 1.1.234 1.23 4.6 -1-1 .0 .0 .0

5 3 12234 1.2.3 .45 0 .1 .1 1.2
4 1.1.233 1.2335 o0 .1 .1 .1 .2

.5 d.1.233 12334 0 .1 .1 1.2

.6 1.1.233 12335 0 112

i 12234 123405 0o .1 .1 .1 2

6 3 1.1.2.3.4 123 .46 -1-1 .0 .0 .0
4 11233 12345 -.1-1 .0 0.0

S 1.1.233 12234 -1 .0 .0 0 .1

.6 1.1.2.33 12334 0 0 .0 .0 .1

Vi 11234 12345 0 0 .0 .1 .1

i 3 1.1.2 34 12356 -3 -2-2-2-1
4 1.1.233 123405 -2 -2 -1 -1 -1

.5 1.1.233 12334 -2-1-1-1..0

6 11233 1233 .4 -1-1-1 .0 .0

N 11234 12345 -1-1-0 .0 .0

Table 3 gives hit- and miss-rates based on these approximations. To
calculate a hit-rate bias ratio (HRB), one first looks up the HRs as a
function of r, BR, and Q, for both groups, and then forms their ratio.
To guard against overestimates caused by slight inaccuracies in the HR
approximations, we suggest rounding up small denominators. To illus-
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trate, let BR = 60% and Q = 70% for the advamdged group, and BR =

40% and Q = 30% for the disadvantaged group, and the validity r = .4
for both groups. Then one finds from Table 3 that the HR's are 81%
and 46%, respectively. To err on the conservative side, we round up the

denominator to 50%, to obtain a HRB = 81%/50% = 1.6.

Table 3.

Approximate Hit-Rates and False-Alarm Rates for binary criteria.

Hit-Rates False Alarm Rates
BR o d 2 3 4 05 d 2 3 4 5
30 30 35 40. 45 50 55 28 26 23 21 19
40 45 50 55 60 65 383 36 33 31 29
50 55 60 65 70 75 48 46 43 41 39
60 65 70 75 80 85 58 56 53 S5t 49
70 75 80 85 90 95 68 66 63 61 59
40 30 34 38 42 46 50 27 25 22 19 16
40 4 48 52 56 60 37 35 32 29 26
50 54 58 62 66 70 47 45 42 39 36
o0 64 68 72 76 80 57 55 52 49 46
70 74 78 82 86 90 67 65 62 59 56
50 30 33 37 40 43 47 27 23 20 17 13
40 43 47 50 53 57 37 33 30 27 23
50 53 57 60 63 67 47 43 40 37 133
60 63 67 70 73 77 57 53 50 47 43
70 73 77 80 83 87 67 63 60 57 53
60 30 33 35 38 41 44 26 22 18 14 10
40 43 45 48 51 54 36 32 28 24 20
50 53 55 58 61 64 446 42 38 34 30
60 63 65 68 71 74 56 52 48 44 40
70 73 75 78 8t 84 66 62 58 54 50
70 30 32 34 37 39 41 25 20 15 10 05
40 42 44 47 49 51 35 30 25 20 15
50 52 54 57 59 6l 45 40 35 30 25
60 62 64 67 69 71 55 50 45 40 135
70 72 74 77 79 8l 65 60 55 S50 45
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POTENTIAL HIT-RATE BIAS CONFOUNDS:
BASE-RATES AND QUOTAS

In their provocative book, The Case Against the SAT, Crouse and
Trusheim (1988) conclude, on the basis of a thorough analysis of large
data sets:

(a) "The SAT thus acts much like a supplement to high school rank
with zero validity that rejects additional blacks" (p. 107); and

(b) "with respect to admission outcomes for low income students [the

SAT acts] much as it does for blacks” (p. 131).
In view of the severity of this indictment, it seems prudent to make sure
that it is not the result of some spurious confound unrelated to the merits
of the test. To anticipate, we will find that some qualifications of the
previous statements are indeed warranted, but that the primary conclu-
sion survives intact and is in fact corroborated by independent data sets.

Before we turn to a review of some large data sets to assess the ex-
tent of hit-rate bias in practice, we, therefore, briefly digress to discuss
two potential confounds which could becloud the interpretation of hit-
rate bias, especially for low validity tests. Such tests are the rule, not
the exception, especially as the prediction interval lengthens. As Hum-
phreys (1968) has shown, ACT validities drop from .48 for’ freshman
GPA (FGPA) to .16 for senior GPA. Similarly, Crouse and Trusheim
(1988) found that the validity of the SAT for the college graduation
criterion is in the low 20s.

Base-rate confounds

For low validity tests, the base-rate problem is especially grave. It is
apparently not universally realized that a test with positive validity may
be worse than useless, namely when betting ‘on the more frequent crite-
rion outcome ensures a larger percentage of correct decisions than use
of the test-score. Concretely, if one defines "mentally retarded” by an
IQ more than two standard deviations below the mean (or "genius" by
an 1Q more than two standard deviations above the mean), then simply
betting on "normal" (or, equivalently, admitting randomly on the
premise that every-one is "normal") ensures over 97% correct decisions.
A test would have to have unrealistically high validity to override such a
high percentage of correct decisions obtainable from high base-rates
alone. '

In spite of the self-evident importance of this base-rate problem, and
the indisputable fact that the validities of college entrance exams are
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modest at best (see, e.g., Donlon, 1984, p. 160), we have been unable
to locate quantitative assessments of the extent of the base-rate problem
in practice. We, therefore, computed the percentages of correct deci-
sions obtained (a) with predictions based on the test and (b) with predic-
tions based on the maximum base-rate alone. The results are given in
the third block of Table 2 in terms of the differences %C/100 — max(br,
1-br). Positive values mean the test improves over random admissions,
and negative values that it makes matter worse.

As can be seen, only for even base-rate splits (br = .5) do tests uni-
formly improve over random admissions. For 2:3 base-rate splits, only
tests whose validities exceed .4 will improve over random admissions,
while tests with validities below .2 are worse than no test at all. For 3:7 ~
splits (as found in Crouse and Trusheim's 1988 chapter on Black/White
comparisons, see below), no test in the realistic validity range (r<.5) is
likely to improve over random admissions. Thus it appears that the base
rate problem is much more severe in practice than its neglect by most
theorists might suggest. For a notable exception to this rule see Meehl
and Rosen (1955).

Quota confounds

Since HRBs involve a comparison of two groups which, in general,
will have different admission quotas and base-rates, it is important to
understand that smaller quotas tend to induce smaller hit-rates (see Hit-
Rate Theorem). This is relevant for hit-rate comparisons of single
versus compound predictors (e.g., between high-school record alone
versus high-school record plus entrance test) when the criterion, such as
FGPA, is continuous. If one retains the same cut-off to define "pass”,
then combining both predictors will induce smaller quotas so that the
effect of adding another predictor can no longer be distinguished from
the effect of the induced tighter quotas. An obvious remedy for this
problem is re-adjustment of the quotas of the composite so that they uni-
formly dominate the quotas for the single predictor.

EMPIRICAL OVERVIEW OF HIT-RATE BIAS IN PRACTICE
Crouse and Trusheim: SAT, Black/White contrast

The results of our re-analysis of Crouse and Trusheim's Black/White
data are shown in Table 4. The joint frequencies TP, TN, FP, and FN
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(see Table 1 for definitions) were reconstructed from the proportions in
the bottom half of Crouse and Trusheim's Table 5.8 (p. 104). In view
of the high base-rates (77.4% for Whites, 65.7% for Blacks), it comes
as no surprise that High School Rank (HSRNK) alone is already worse
than purely random admissions (cf. Table 2) for all three groups.
Adding the SAT to HSRNK depresses the %C still further (see Table
4¢). Thus, these particular data are not conclusive evidence against the
SAT, because the differential bias effect could be due to the severely
skewed base-rates, rather than any intrinsic flaw in the SAT.

Table 4.
Hit-rate bias confound in Crouse and Trusheim Black/White data.

Table 4a. Joint frequency tables for White, Black, and total using
HSRANK.*

White Black Total
NG GR Total NG GR Total NG GR Total
P 322 1343 1665 44 106 150 366 1449 1815
F 127 195 322 25 26 51 152 221 3713
449 1538 1987 69 132 201 518 1670 2188

Table 4b. Joint frequency tables for White, Black, and total using
HSRANK+SAT.* :

White Black Total
NG GR Total NG GR Total NG GR Total
P 322 1323 1645 429 87 116 351 1410 1761
F 127 215 342 40 45 85 167 260 427
449 1538 1987 69 132 201 518 1670 2188

* The criterion variable was graduation and the decision variable was
predicted GPA (pass > 2.5). Data from Crouse and Trusheim (1988, p. 104,
Table 5.8).
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Table 4c. Sunmary statistics for joint frequency tables.

White Black Total
HSRNK +SAT HSRNK +SAT HSRNK +SAT
N 1,987 1,987 201 201 2,188 2,188
BR 77.4 77.4 65.7 65.7 76.3 76.3
Q 83.8 82.8 74.6 57.7 83.0 80.5
%C 74.0 73.0 65.2 63.2 73.2 72.1
HR 87.3 86.0 80.3 65.9 86.8 84 .4

Note: HRBHSRNK = 1.1; HRBHSRNK-FSAT = 1.3.

However, Crouse and Trusheim present additional data which
strengthens their case. Their Table 5.5 (p. 100) gives two joint distribu-
tions of College GPA predicted (a) from HSRNK alone, and (b) from
HSRNK plus SAT, for Whites and for Blacks. They concluded that, for
these data, adding the SAT increases bias against Blacks in the sense
that Whites are screened in and Blacks are screened out.

One potential problem with this analysis is that predicted college
GPA invites quota confounds since it is used with the same cut-off (2.5)
in the single and the composite predictor case. As the authors note,
adding the SAT to HSRNK tightens the quotas of the composite predic-
tor relative to those of the single predictor.

In order to control for this potential quota confound, we pooled both
joint distributions and then located a series of cut-offs to equalize the
‘quotas for single and composite predictors as much as possible, making
sure that all composite predictor quotas exceed those for HSRNK alone
(thereby biasing the outcome in favor of the composite predictor). The
results of our re-analysis confirm part of Crouse and Trusheim's main
conclusion, that-the addition of the SAT screens in more Whites and
screens out more Blacks (See Table 5a). On average across all quotas,
addition of the SAT admits 153 (6.9%) additional White students, and it
rejects 23 (9.9%) additional Blacks (Table 5b). Since, according to the
authors (p. 94), roughly 700,000 Whites and 75,000 Blacks took the
SAT in 1972, these estimates transiate nationwide into roughly 48,000
Whites who owe their admission to the addition of the SAT over and
above HSRNK, and 7,400 Blacks who were denied admission on the
basis of the SAT composite but would have been admitted on the basis
of HSRNK alone. '
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Table 5. : ) :
Admission bias in Crouse and Trusheim Black/White data after correcting
for quota confound.

Table 5a. Effects on admissions when adding SAT to HSRANK.

Total quola Whites admitted Blacks admitted
HSRANK  +SAT HSRNK +SAT HSRNK +SAT
40.4 48.2 929 1134 67 48
54.6 59.1 1235 1381 103 69
65.2 69.2 1437 1596 126 100
73.8 77.4 1662 1770 147 127

80.3 83.3 1802 1890 168 152

Notes: N = 2,220 Whites and N = 232 Blacks. BRypjie = 79.8%; BRyjack =
54.7%; BRyyu = 77.4%: The decision variable was Predicted GPA (Pass >
2.5). Data from Crouse and Trusheim (1988, p. 100, Table 5.5).

Table 5b. Change in admissions after adding SAT to HSRANK.

White gains (%) ‘Black losses (%)

205 (8.8) .19 (8.2)
146 (6.6) 234 (15.7)
123 (5.6) 226 (11.2)
108 ¢5.1) 20 (8.6)
88 (4.0) 16 (6.9)

While the reanalysis of Crouse and Trusheim's joint distributions in
their Table 5.5 strengthens the plausibility of their main point, it does
not completely prove it, because the joint distributions do not involve
the criterion. On the basis of these data it is not possible to determine
what percentage of Whites screened in are qualified, and what percent-
age of Blacks screened out are unqualified. To unambiguously settle the
problem of differential hit-rate bias, one needs joint distributions which
involve the criterion. Before returning to this problem, we briefly
review two other data sets bearing on hit-rates generally.
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Crouse and Trusheim: SAT, low/high income contrast

Base-rate confounds are no longer a problem for the High/Low
Income data Crouse and Trusheim discuss in Chapter 6 of their book
(Table 6.5, summarized in our Table 6). In this case, the base-rates are
near 50%. HSRNK substantially improves the %C over random
admissions. '

Table 6.
Hit-rate bias in Crouse and Trusheim Income data.

Table 6a. Joint frequency tables for High, Low Income groups using
HSRANK alone.* '

High Income Low Income Total

Low High Low High Low High
GP4 GP4 Total GPA GpP4 Total GrPA GpP4 Total
P 480 832 1312 154 159 313 634 991 1625
F 180 77 257 54 14 68 234 91 325
660 909 1569 208 173 381 868 1082 1950

Table 6b. Joint frequency tables for High, Low Income groups using
HSRANK+SAT.*

High Income Low Income Total

Low High Low High Low High
GPA GPa Toul GpA GpA Total GPA GPA Total
P 458 830 1288 124 150 274 582 980 1562
F 202 79 281 84 23 107 286 102 388
- 660 907 1569 208 173 381 868 1082 1950

* The criterion variable was College GPA (qualified > 2.5) and the decision
variable was predicted GPA (pass > 2.5). Data from Crouse and Trusheim
(1988, p. 130, Tabte 6.5).
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Table 6c. Summary statistics for joint frequency tables.

High Income Low Income Total
HSRNK +SAT HSRNK +SAT HSRNK +SAT
N 1,569 1,569 381 381 1,950 1,950
BR 58.0 58.0 454 45.4 55.5 55.5
Q 83.6 82.1 82.2 71.9 83.3 80.1
%C 64.5 65.8 55.9 61.4 62.8 64.9
HR 91.5 91.3 91.9 68.7 91.6 90.6

Note: HRBHSRNK = 10, HRBHSRNK+SAT = 1.3.

However, the quota confound is still a potential problem because the
authors retain the same cut-off (predicted FGPA = 2.5) for FGPA pre-
dicted from HSRNK and from HSRNK+SAT. As a result, the quotas
are uniformly smaller for the composite, which — in view of the hit-rate
bounds theorem — in turn depresses the hit-rates of the composite.
Concretely, for HSRNK the quota is near 83% for both groups (see
Table 6¢). When the SAT is added, it changes little for the High Income
group, but drops 10% for the Low Income group. As a result, the hit-
rates change little for the High-Income group, but drop 20% for the
Low Income group. Adding the test to HSRNK raises HRB from 1.0 to
1.3. This bias increase must be weighed against a 2% increase in %C
for the total group.

The 20% drop in the Low Income HR seems to lend support to
Crouse and Trusheim's main contention that adding the SAT to HSRNK
penalizes the Low Income group. However, a skeptic might attribute the
HR drop to the lower quotas induced by the Predicted FGPA. Before
the case against the SAT can be considered conclusive, one first has to
control the potential quota confound induced by their continuous FGPA
criterion.

Hartigan and Wigdor: GATB, Black/White contrast

Hartigan and Wigdor (1989) present a small data set of 136
carpenters who took the General Aptitude Test Battery (GATB). The
criterion was job performance ratings by superiors. We reproduce their
joint frequency data in Table 7a and the summary statistics in Table 7b.
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One striking fact — not commented on by the authors — is the base-rate
problem for Whites: their %C on the basis of the GATB is exactly the
same as the %C for random admissions (summary Table 7b). For
Blacks, on the other hand, the test improves prediction of job rating
considerably (raising the %C from 35.6% to 71.7%). The fact that both
within group validities are approximately equal is in some quarters
interpreted as a sign that the test is "unbiased". However, this is far
from true for our hit-rate definition of "bias", because the bias ratio is
HRB = 1.69. Hartigan and Wigdor (1988, p. 260) conclude:

Table 7.
Hit-Rate Bias in IHartigan and Wigdor GATB data.

Table 7a. Joint frequency tables for White, Black, and total using GATB.

White carpenters Black carpenters Total
Rated: Lo Hi Total Lo Hi Total Lo Hi Total
P 9 60 69 5 8 13 14 68 82
F 11 11 22 24 8§ 32 35 19 54
20 71 91 29 16 45 49 87 136

Note: The criterion variable was Job Performance (Good or Poor) and the
decision variable was the GATB (Pass or Fail). Cutpoints had been arbitrarily
chosen. Data from Hartigan & Wigdor (1989). :

Table 7b. Summary statistics for joint frequency tables using the GATB.

White Black Total
N 91 45 136
BR 78.0 35.6 64.0
Q 75.8 28.9 60.3
%C 78.0 71.1 75.7
HR 84.5 50.0 78.2
FR 45.0 17.2 28.6
Validity .49 .47 .51

Note: ”RBGATB = 1.7.
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"At this point in history, it is certain that the use of the GATB without
some sort of score adjustments would systematically screen out blacks,
some of whom could have performed satisfactorily on the job. Fair test
use would seem to require at the very least that the inadequacies of the
technology should not fall more heavily on the social groups already
burdened by the effects of past and present discrimination.”

DIFFERENTIAL HIT-RATE BIAS FOR
COMPOSITE PREDICTORS: NCAA DATA

We now return to the, as yet, unresolved question of differential hit-
rate bias which we were unable to settle because the previous data sets
were too small or weakened by confounds.

More recently, a fairly large data set has become available which
does lend itself to settling the differential hit-rate bias question Crouse
and Trusheim raised in their book. These data were collected under the
auspices of the National Collegiate Athletic Association (NCAA) to
examine the effects of proposed changes in college admission standards
for student athletes. The main results are summarized in Table §.

Table 8.
Hit-Rate Bias in NCAA Student-Athletic data.

Table 8a. Incremental Hit-Rate Bias when SAT is added to HSGPA.

Total White HRs Black HRs HRB
Q Gpa SAT Com-  Gpa saT Com- GPA SAT Com-
posite posite posite
89 96 99 98 g4 718 16 1.14 126 1.29
81 92 95 94 70 60 63 1.32 1.58 151
69 85 88 88 s0 39 47 1.68 2.27 1.87
60 77 80 81 42 28 37 1.82 2.87 2.12
51 69 1 T 34 23 24 2.03 3.13 3.02
39 55 60 59 2t 16 13 2.62 3.89 4.51
29 43 48 47 2 9 9 3.48 5.11 5.01
19 30 32 32 4 5 5 7.76 6.89 6.94
10 16 16 17 2 2 2 6.69 7.02 10.75

Notes: N = 1,373 Whites and N = 303 Blacks who took the SAT; BR = 62%
for Whites and BR = 43% for Blacks taking the SAT.
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Table 8b. Incremental Hit-Rate Bias when ACT is-added to HSGPA.

Total White HRs . Black HRs HRB
Q gpPA AcT Com-  Gpa Act Com- GPA AcT Com-
posite posite posite
93 98 99 99 92 91 95 1.06 1.09 1.04
87 94 98 96 89 67 81 1.05 1.45 1.18
83 93 96 95 84 64 80 1.09 149 1.19
79 90 93 93 81 56 . T2 1.11 1.66 1.29
75 88 91 91 80 52 63 .11 1.77 1.45
71 86 88 87 75 44 55 1.14 2.02 1.60
60 77 80 80 64 39 42 1.20 2.55 1.90
55 71 75 75 55 29 39 1.30 2.81 1.92
48 65 68 68 42 29 30 1.55 3.33 2.30
40 57 60. 60 30 19 23 1.92 347 2.52
35 50 51 62 27 19 20 1.87 3.23 2.58
28 40 42 44 22 19 11 1.83 3.39 4.04
21 32 35 34 14 9 8 2.26 3.74 4.36
16 26 27 27 8- 9 7 3.27 8.70 3.35
12 20 21 21 5 5 2 4.33 6.62 13.24

Notes: N = 948 Whites and N = 249 Blacks who took the ACT. BR = 52%
for Whites and BR = 26% for Blacks.

Since a preliminary analysis revealed systematic differences in the
validities and base-rates for students who took the SAT and students
who took the ACT, we analyzed both data sets separately.

The hit-rates and bias ratios of the SAT are presented in Table 8a for
the full range of admission quotas. For any given quota, O, the SAT
hit-rates exceed the HSGPA hit-rates for Whites. The reverse is true for
Blacks. The hit-rates for the composite predictor are intermediate.

This result is portrayed graphically in Figure 2. Figure 2a gives the
SAT hit-rate curves separately for Whites (upper 3 curves) and Blacks
(lower 3 curves). The distance between the two innermost curves is the
hit-rate difference for HSGPA alone. For a 60% quota, this difference
is 77%-42% = 35%, corresponding to a bias-ratio of 1.82. For the
SAT, the values are 80%-28% = 52%, corresponding to a HRB of
2.87. Concretely, if only HSGPA is used to predict college graduation,
then, for every qualified black athlete admitted, roughly two qualified
white athletes are admitted. If the admission decision is based on the
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SAT alone, then for every qualified Black admitted, three qualified
Whites are admitted. ‘The figures for the composite HSGPA +SAT are
intermediate between these two extremes. The same general picture
holds for the ACT (Table 8b, Figure 2b), except that the base-rates and
validities are different.

Thus we find that the NCAA data independently corroborate Crouse
and Trusheim's main conclusion that the addition of college entrance
exams to high school record screens in unqualified Whites and screens
out qualified Blacks, further aggravating already existing hit-rate bias
against Blacks.

DISCUSSION

In this paper, we have attempted to contribute to an informed
discussion of the bias problem in mental testing. Such discussions can
only be fruitful after the term "bias" has been clearly defined, and
something is known about its pervasiveness in the real world.

In the past, most discussions were deficient on both counts. We
marvelled at the passions some contributors to a Special Issue on test
bias in the Journal of Educational Measurement were able to generate in
a virtual data vacuum. In contrast to Cronbach (1976, p. 31), we did
not read this as a sign that "thinking about bias in selection has
advanced rapidly in the past few years".

While we sympathize with Cole's definition of "test bias”, neither
she nor we ever believed that it is the only possible definition. If other
scholars (e.g., Peterson & Novick, 1976) view other forms of test bias
as more important, then they should adduce supporting data.

Only after the terms have been clearly defined and the relevant facts
are known will it become possible to strike a rational balance between
various imperfect policy alternatives in an attempt to reduce extant
social injustices. Forty years ago, Meehl and Rosen (1955) already have
pointed out the importance of judging the merit of a test not just in
terms of single validity coefficients but in the context of quota and base
rate. "... notably when the base rates of the criterion classification
deviate greatly from a 50 per cent split, use of a test sign having slight
or moderate validity will result in an increase of erroneous clinical
decisions” (p. 210).

These early warnings went largely unheeded, partly perhaps, because
at that time, illustrations of the interactions between classification rates
and validities had remained eclectic and nonsystematic. Our explicit
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:xpressions, equations 12 and 13, make it possible for the first time to
\ssess the practical impact of these interactions in a systematic way.
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RESUME

Nous présentons de nouveaux résultats sur une forme de biais dans
un test qui semble avoir été largement ignoré antérieurement, a quelques
exceptions pres (notaminent Cole, 1973 ; Hartigan et Wigdor, 1989).
Nous I'appelons "biais du taux de succeés" parce qu'il est défini comme
la différence entre le taux de succes (c'est-a-dire la probabilité qu'un
sujet de niveau requis réussisse le test) dans un groupe constitué de
sujets 2 hautes performances et le taux de suceés dans un groupe com-
posé de sujets a basses performances. Typiquement, le test favorise le
groupe a performances ¢levées. Contrairement 2 Cole (1973, nous nous
sommes centrés sur des critéres binaires, tels que 1'obtention des diplo-
mes. Dans une premiére partie théorique, nous présentons un théoreéme
("les limites du taux de succés”) qui met en évidence le fait que 1'aug-
mentation des niveaux des prédicteurs n'est pas équivalente a 1'augmen-
tation des niveaux des critéres, comme certains le croient. Au contraire,
cela accroit spécifiquement le biais de taux de réussite. Ensuite, nous
dérivons et nous présentons sous forme de tableau une simple approxi-
mation pour estimer les pourcentages de réussite en fonction de la
validité, du taux de base et du quota d'admission. Dans la partie empi-
rique de I'article, nous évaluons 1'ampleur du biais du taux de succes
par une nouvelle analyse d'ensembles de données utilisant le SAT,
I'ACT et le GATB. Enfin, nous examinons comment 'addition des
notes aux tests et des résultats au lycée affecte le biais du taux de succés
pour la prédiction de réussite au diplome et I'augmente.
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APPENDIX 1.
Theorem (Hit-Rate Bounds).

A hit-rate proportion never exceeds the ratio of admission quota over base-
rate:
hr < q/br. (15)
Proof: From the definitions 4, 1, 2 of Table 1;

hr ;= HR/100 = TPITP+FN) < (FP+TP)(TP+FN)
= [(FP+TP)YTOTAL)[(TP+FN)/TOTAL) = q/br. (16)
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APPENDIX 2.
Approximations of HR and FR based on linearized cumnulative normal.

The approximatidns for HR and FR in terms of BR, @, and r, given in the
paper, rely on the fact that the cumulative normal distribution M(z) is approxi-
mately linear around (0, .5). For the slope of a straight line through (0, .5) and
(1, N(1)), one finds that M) - .5 = .34, which we approximate by 1/3. This
gives the approximations

p = N = .5 + 2/3, and its inverse, 2 = N1l =3p-.5, U0
presumed to be valid in the middle range. Now recall that

r = d' Vbr(1-br), where (18)

d = (pg- pwy)lo. 19
Since the definitions of HR and FR in Table 1 imply

1-hr = M(c-pglol. 1-fr = N(c-py) o], (20)

one finds, on applying N-1(.) in (17), that

d' = NV - N V(-hr) = 3(1fr-.5) - 3(1-hr-.5) = 3(hr-fr) @n
which simplifies (18) to

r = 3(hr-fr) Vor(1-br). (22)
To get rid of one of the two unknowns, say fr, we can use the definition of Q
in Table 1:

q:=fp+tp = fr¥(1-br) + hr*br 23)
which gives

fr = (g-hr*br)/(1-br). 24)
Substituting this expression for fr in eq. (22) yields, after some simplification,

hr = q + rN(1-bnibrl3 25)

as an estimate of Ar explicitly in terms br, g, 1. Conversely, on solving ¢ for
hr in eq. (23) and substituting the result into eq. (22) for r, one obtains an
approximation for fr:

fr = q-r~Nbri(1-br)/3. (26)
In passing, note that the ratio,

(q-fr)/(hr-q) = (br)/(1-br) 7
is independent of the validity r. On the other hand, the product

(qfr)thr-q) = 219 (28)
can be used to estimate the validity as

r = 3N(qfr)hr-9) (29)

without any need to consult normal tables. Computer simulations showed that,
for the parameter range indicated above, these approximations for Ar and fr
produce the true values within .02 in more than 92% of all cases, and within
04 in 97%. For r < .5, only 1 out of 672 discrepancies exceeded .06.
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Appendix 3.
Eliminating Hit-Rate Bias.

To eliminate Hit-Rate Bias, one has to choose two different cut-offs, ¢, for
the Advantaged Group and ¢y, for the Disadvantaged Group, such that
HR(Advantaged) = HR(Disadvantaged) : 30)
For binary criteria and normal predictors with common variance, the two cut-
offs are given by the following:
where ppq and pyq are the conditional means for the qualified subjects in each
group. ,
Proof: From _
1 - HR(Advantaged = M(c, - yAq)/a] = M(cp - qu)/a]
= | - HR(Disadvantaged) (32)
the result follows at once since MN(.) is everywhere invertible.
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