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FITTING ONE MATRIX TO ANOTHER UNDER CHOICE OF A
CENTRAL DILATION AND A RIGID MOTION

PerErR H. ScEONEMANN* AND RoBERT M. CARROLLY

THE OHIO STATE UNIVERSITY

A least squares method is presented for fitting a given matrix 4 to
another given matrix B under choice of an unknown rotation, an unknown
translation, and an unknown central dilation. The procedure may be useful
to investigators who wish to compare results obtained with nonmetric scaling
techniques across samples or who wish to compare such results with those
obtained by conventional factor analytic techniques on the same sample.

1. Introduction

The presently popular nonmetric multidimensional scaling techniques,
such as Shepard’s [1962], Kruskal’s [1964a, 1964b], McGee’s [1966], those
of the Guttman-Lingoes series [1967, 1968], and, presumably, several others,
produce configurations of points which are obtained by transforming sets
of similarity or dissimilarity measures into distances. Goodness of fit is
assessed in terms of the degree of monotonicity between the observed simi-
larity measures and the interpoint distances of the reproduced configuration.
The coordinates of the reproduced configuration are arbitrary in the sense of
being only defined up to a central dilation (a uniform expansion or contrac-
tion along the coordinate axes), a translation (a shift of the origin), and a
rotation, as these transformations in no way affect the monotonicity measure
of goodness of fit. Under ‘‘rotation” we include both proper and improper
rotations where improper rotations consist of proper rotations followed by an
odd number of reflections.

Some investigators (e.g., Kruskal, 1964a, Guttman, 1968) have pointed
out the possibility of using correlation coeflicients as measures of similarity.
This raises the question of how results obtained with nonmetric scaling
techniques would compare with results obtained by the more traditional
factor analytic techniques. Yet before a meaningful comparison could be
made, it would be necessary to rotate, translate, and stretch or shrink the
nonmetric scaling configuration so as to obtain maximal agreement with the
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factor solution. This would become a difficult and laborious task however,
as the number of dimensions increased.

The purpose of this paper, therefore, is to present a least squares tech-
nique which is readily programmed for analysis by computers for fitting
a given matrix A to another given matrix B under choice of a rotation, a
translation (i.e., together, a “rigid motion”), and a central dilation.

The present problem is a generalization of the “orthogonal Procrustes”
problem which has been solved by Green ]1952] for the full rank case and
by Cliff ]1966] and Schonemann [1966] for the deficient rank case.

2. Mathematical Derivation

As a model we chose
(2.1) B=cAT+ Jy + E

where J’ = (1,1, -+, 1) A and B are two known p X ¢ matrices. and where
the orthogonal ¢ X g matrix T, the ¢ X 1 vector v, and the scalar ¢ are to be
chosen so as to minimize the sum of squared elements e;; of the residual
matrix E.

We note that this particular formulation of the least squares problem
is as good as any of the other five which can be obtained by permuting the
sequence of the unknown transformations, because the parameter triples of
all six formulations are related by 1-1 transformations, so that [Anderson,
1958, p. 47] the solution triples relate by these same transformations. To
illustrate, the parameters R, », d in B = d(4 + Jo')R + E are related by
d=c R =T, and do'R = v to the unknowns in (2.1).

To obtain the solution for the present formulation (2.1) we differentiate

(2:2) f=hHh+1f,
where

f = tr E'E = const + ¢ tr T"A’AT + py'y — 2ctr B'AT

— 2tr B'Jy' + 2ctr T'A'Jy',

and

f =t LT'T — I)
and where L is a ¢ X ¢ matrix of unknown Lagrange multipliers, with respect
to the unknowns T, v, and c.

Upon setting the derivatives (e.g., Schonemann, 1965) equal to zero
one obtains

2.3) 9f/0T = 2¢°A’AT — 2cA’B 4 2¢A'Jy' + TM = ¢
where
M = L 4 L’ = M’ is an unknown symmefric matrix,
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©@4)  8f/ay = 2py — 2B'J + 2T AT = ¢,
@5  of/dc = 2t T'A’AT — 24 B'AT + 2t T"A'Jy" = 0.

From (2.4) one obtains

2.6) v = (B—cAT)'J/p
and from (2.3)
2.7 T'A'B — T'A'Jy = a symmetric matrix,

which reduces in view of (2.6) to

T'A'B — T'A'(JJ'/p)(B — cAT) = symmetric,
so that
(2.8) T'A'(I — JJ'/p)B = symmetric,

since ¢T"A'(JJ'/p)AT certainly is.

Note that (2.8) is free from v and ¢ and can be solved for T at once
by use of the same symmetry argument which Schénemann [1966] employed
to solve the “orthogonal Procrustes” problem: since (2.8) is of the form

2.9 T'C =CT

(2.10) T=VW

where

2.11) VDW' = C = A'I — JJ'/p)B

is the Eckart-Young decomposition of C = A’(I — JJ '/p)B, a matrix which
is proportional to the (sample) covariance matrix of (the columns of) 4
with B. Care should be exercised in choosing the correct orientation for the
columns in V and W in (2.10). As was shown in more detail in Schénemann
[1966], the orientation should be such that V’CW is a non-negative diagonal

matrix.
Having computed 7' one can use it to solve (2.5) for the contraction

factor ¢ after eliminating ¥ by means of (2.6):
ctr T"A’AT — tr BPAT + tr T'A'(JJ'/p)(B — ¢cAT) = 0

1.e.,
(2.12) ¢ = tr T"A'"(I — JJ'/p)B/tr A/(I — JJ'/p)A.

Egs. (2.6) and (2.12) combine to give the translation vector . This
vector need not be computed explicitly, however, since both
(213) B =cAT + Jy = AT + (JJ'/p)(B — cAT)

= (JJ'/P)B + ¢(I — JJ'/p)AT,
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the matrix of best fit, as well as
2.14) E=B—B= (- JJ'/p)(B — cAT),

the matrix of residuals, do not involve v. In other words, the fit is the same
regardless of the relative location of the origins of both configurations.
The procedure is easily programmed:

(i) Compute the vectors of column means a = A’J/p and 8 = B'J/p
and subtract these from the rows of A and B, respectively, to
obtain the two column-centered matrices A* = 4 — J&', B¥ =
B — JB'. Save B.

(ii) Enter a standard orthogonal Procrustes subroutine [Green, 1952;
Cliff, 1966; Schonemann, 1966] with the column-centered matrices
A* B* to obtain, upon return, the transformation matrix 7' and
the matrix A*7T'.

(iti) Compute the scalar ¢ = tr [(T"A*)B¥]/tr A* A*,
(iv) and the matrix of best fit B = ¢(4*T) + JB'.

If the contraction factor ¢ is not wanted, one simply sets ¢ = 1 in (iii) to
obtain the least squares solution under variation of I' and v alone.

3. A Symmetric Measure of Fit

For many practical purposes the simple error sum of squares tr E'E =

> 3" ¢, (perhaps divided by pg, the number of elements in E) will suffice

as a measure of fit. If, however, the objective is to interpret this measure as
an index of similarity between A and B, and if there is no reason to single
out one matrix as error-free, i.e., if both matrices are based on fallible data,
then one may prefer a symmetric measure of fit.

Bargmann [1960] has pointed out that tr E'E is not a symmetric measure
of fitif 7 (in B = AT + E) is unrestrained (unconditional oblique Procrustes
problem). On the other hand, if 7' is constrained to be orthogonal (orthogonal
Procrustes problem) then tr E'E is a symmetric measure of fit since tr £'E =
tr T'E'ET. That is to say, one obtains the same error sum of squares whether
one fits 4 to B (solves B = AT + E for T) or Bto A (solves A = BS + E
for S), and the solution matrices are simply related (S = T7).

In the present instance the transformation matrices I' and S in

8.1) B=cAT + Jy'+ E and A = dBS - J§ 4 E*
are also simply related, as
(3.2 =T

sinee either one is obtained as the solution of an orthogonal Procrustes
problem on A and B after removing the column means.
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To see how the error sums of squares tr E'E and tr E*¥E* relate, we
recall that

3.3) E =B — cAT — J¥

simplifies to

(34) E=(—-JJ/p)(B —cAT) = QB — cAT), say
where

(3.5) c=tr C'"T/ir A'QA and Q=1I1-JJ"/p=Q".
Upon substituting ¢ one finds for tr E'E

,m _ (tr B'QB)(tr A’QA) — (tr T’C)’.
3.6) tr B'E = w AQA

Thus it appears that both ¢, d and tr E'E, tr E¥E* are related by the same
constant of proportionality .
3.7 : u = tr B'QB/tr A'QA

since

ctr A/QA = tr C'T = d tr B'QB, te., ¢ = ud

from (2.12) and also
(tr E'E)(tr A’QA) = (tr E¥E*)(tr B'QB), d.e., tr E'E = utr EX* E*
from (3.6). Note that u is independent of the unknowns 7', ¢, and 7.
Therefore, the measure

(3.9 e = tr B'EVtr A’QA/tr B'QB = (tr E'E)u™"”*

could serve as a symmetric measure of fit, if such is desired, since

e = (tr E'E = (ir B¥E¥u-w™"" = (tr B¥E*)u™”
= (tr E¥'E*)p™"* = ¢*

where v = u~* follows from (3.7) upon interchanging A and B. Using this
measure of fit amounts to carrying out the least squares fit on the scaled
matrices w4 and w V*B, or, equivalently, to solving a weighted least
squares problem, minimizing tr E'(u~""*)E, rather than tr E'E.

3.9

4. Nustrative Examples

A FORTRAN IV program was written to carry out the computations
described in the preceding sections. A statement listing is available upon
request from the junior author. Here we present three illustrative examples:
one based on artificial data generated without error, another based on arti-
ficial data generated with random error, and a third based on empirical data
which we took from the literature.
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Matrix A
4.000 0.000
3.000 1.414
0.000 1.414
0,000 0.000

Residual Matrix B
E=g

PSYCHOMETRIKA

Table 1

Data Generated Without Error

Target Matrix B

—
3.828 1.828
LAt 2.414
-3.828 -1.828

-1.828 -3.828

Transformation Matrix T

Matrix of best fit B

3.828 1.828
RIS 2.414

-3.828 -1.828
-1.828 =3.828

Translation Vector y!

«707 «707 -1.828 ~3.828
-.707 <707 |
Contraction factor ¢ trE'E/pq Normalized Symmetric Error
2.000 .000 «000
4
-4

Figurs 1
Graphical representation of matrices A, B, and B for data generated without error..
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Table 2

Data Generated with Random Ervor

Matrix A Target Matrix B Matrix of best fit B
4,000 0.000 4,456 1.688 i.0u6 1.596
3.000 1.414 .165 1.6u46 684 2.003
0,000 l.414 -3.230 ~2,045 -3.252 -2, 345
0.000 0.000 -1.114 -4,235 ~1.202 -4,200

. . L - . -
Residual Matrix E Transformation Matrix T Translation Vector y®
410 2092 «671 2741 -1.202 ~k,200
-.519 -.357 ~oTH1 671 N ]

2022 «300 - _
.088 «.035
L -
Contraction Factor ¢ trE'E/pq Normalized Symmetric Error
1.955 ~084 082
4
3

FicUre 2
Graphical representation of matrices A, B, and B for data generated with random error.
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Tor the error-free case we derived the “target matrix” B from A by
rotating A through an angle of 45 degrees, then translating the origin by
1.828 and 3.828 units, and multiplying all interpoint distances by two. Thus
B(=cAT + Jv') should equal B exactly, as indeed it did (see Table 1 and
Figure 1).

The second set of data was identical to the first except that random
normal deviates with mean zero and variance unity were added to the target
matrix yielding a new matrix B which no longer allows for a perfect fit.
The actually obtained fit (see Figure 2 and Table 2) was fairly good, how-

Table 3
Empirical Data Reported by Prien and Liske (1962)

Matrix A {Scaling Solution) Matrix B (Factor Solution)
— —_— —-

1.409 1.066 ~-1.378 0.390 0.10% 0.233 -0.198 0.350 0.582 0.219
1.541 0.683 -0.251 -0.856 ~0.467 0.360 0.012 0.3u7 0.616 0.109
1.365 0.781 -0.905 -0.923 =-0.275 0.241 0.053 0.354 0.785 -0.010
0.586 1.706 -0.190 -0.097 ~0.482 0.867 0,053 0.137 0.365 0.063
0.225 1.418 -0.871 -0.303 -0.407 0.501 0.078 0.221 0.547 0.099
1.213 1.109 0.081 -0.061 0.830 0.474 0,030 0.486 0.336 0.2u2
1.813 -0.148 0.002 -1.014% 0.880 0.234 0.289 0,927 0.036 0.008
{ 1.076 1,223 -0.175 -0.791 0.uB4 0.52u4 0.083 0.508 0.415 0.113
{-1.809 ~-0.499 -1.615 -0.459 0.857 0.031 0,220 0.063 0.237 0.340
-0.767 -1.281 1.108 -0.831 0.519 ||-0.043 0.496 0.161 0.229 0.369
-1.188 -1,950 -0.186 ~0.349 0.071 ||-0.148 0.589 0.058 0.306 0.371
1-1.012 -0.944 1.206 1.398 -0.800 0.112 0.420 -0.166 0.123 0.460
«<1.102 -0.241 0.729 0.178 -1.730 0.341 0,574 -0.228 0.278 0.151
}-0.628 -0.749  0.922 1.726 1.599 0.049 0.111 0.043 0.026 O.6uh4

0.119 -2.214 -0.675 0.840 0,907 0.017 0,319 0.215 0.012 0.482
-0.145 ~1.829 0.690 0.945 ~1.205 0.174 0.531 ~-0.025 -0.006 0.402

Matrix of best fit A Matrix of best fit B

0.607 0.964% -1.502 -0.070 0.856 0.336 -0.158 0.239 0.391 0.083
0.632 1.028 -0.937 -0.607 0.048 0.416 0,177 0.403 0.398 -0.018
0.51% 0.909 -1.490 -1.226 -0.204 0.336 0,095 0.396 0.490 -0.009
0.973 1.863 0.478 0.412 ~-0.973 0.559 0.080 0,207 O.u86 0.159
0.5%10 1,183 -~0.449 -0.304 ~0.431 0.411 0.060 0,177 0.573 0.155
1.129 0.847 -0.005 -0.119 0.624 0.463 0,045 0.451 0.332 0.279
2,551 -0.839 0.497 -1.084 0.989 0.262 0.202 0.627 0.275 0.132
1.308 1.002 -0.036 =-0.537 0.235 0.446 0.114 0.461 0.473 0.196
-0.391 ~0.794 -0.436 0.438 0.139 ||{-0,120 0.203 0.083 0.618 0.485
-0.605 ~1.395 0.114 ~0.277 0.227 0.132 0.602 0.275 0.251 0.u487
-1.132 -1.673 -0.065 -0.477 -0.008 ||-0.110 0.491 0.083 0.275 0.352
-1.146 -1.028 0.390 0.859 =-0.308 0.295 0.426 -0.152 0,028 0.398
l-0.864 -0.462 0.611 0.138 -1.609 || 0.362 0.502 =~0.162 0.313 0.201
{-0.627 -0.856 0.010 1.435 0,999 0.200 0,181 0,153 ~0.016 0.706
-0.155 -1.335 0.335 0.578 0.78% }||-0.170 ©0.186 0.203 0,026 0.3%0
{-0.609 ~1.282 0,977 0.8635 -0.288 0.143 0.449 -0.064 -0.032 0.160




0.801
0.908
0.850
~0.387
-0.285
0.083
-0.738
-0.232
-1.417
-0.161
-0.055
0.134
-0.237
-0.000
0.274
0.u64

0.200
-0.319
0.591
~0.408
~0.583

0,785

PETER H. SCHONEMANN AND ROBERT CARROLL

Table 3 continued

Residual Matrix E¥

0.101 0.124
-0.345 0.686
~0.128 0.585
-0.157 ~0.668

0.234 -~0.421

0,261 0.086

0.691 -0.,u495

0.220 =-0.138

0.295 -1.178

0,114 0.994
-0.276 ~0.120

0.084 0.815

0.221 0.117

0,107 0.911
-0.878 ~-1.010
~0.546 ~0,287
Transformation

0.751 0.57%
-0.393 0.613

0.005 0.122

0.516 -0.438

0.117 0.292

0.460
~-0.2u43
0.303
~0.509
0.001
0.058
0.070
~-0.254
-0.8397
-0.553
0.128
0.538
0.033
0.290
0.261
0.309

Matrix S.

0.101
-0.543
-0.513
-0.611

0.238

Translation Vector &°

-1,158

-1.005

1.213

Contraction Factor d

3.651

trE*'E*/pq

0.2u6

~0.552
-0.516
~0.070
0.491
0.024
0.205
~-0.109
0.248
0.718
0.292
0.073
-0.491
~0.120
0.599
0.117
-0.916

-0.231
~-0.266
0.609
~0.035
0.709

~0+610

Normalized Symmetric Error

0.058

-0.103
-0.056
-0.095
0.307
0.089
0.010
-0.028
0.077
0.151
-0.175
~0.038
~0.183
-0.021
-0.151
0.187
0.031

0.200
0.751
0.575
0.101
-0.231

0.273

Residual Matrix B

-0.039 0,050
~0.165 ~0.056
«~0.042 «~0.042
~0.027 -0.070
0.017 0.0u3
~0.015 0,035
0.086 0.293
-0,031 0.046
0.016 ~0,020
~0.,106 -0.114
0.097 ~0.025
-0,006 =-0.013
0.071 ~0.065
-0,070 0,110
0.132 0.005
0.082  0.039
Transformation
-0.319 0,591
-0.393 0.005
0.613 0,122
-0.543 ~0.513
-0.266 0,609

0.190
0.217
0,294
-0.121
-0.026
0.003
-0.239
~0.058
-0.381
-0.022
0.030
0.094
-0.035
0.042
-0.014%
0.026

Matrix T

-0.408

0.516
~0.438
~-0.611
~0.035

Translation Vector y'!

0.243

0.189

0.322

Contraction Factor ¢

0.205

0.013

trE'E/pq

253

0.135
0.127
~0.000
-0.096
-0.056
-0.037
=0.124
-0.083
~-0.145
-0.068
0.018
0.061
~0.050
-0.062
0.141
0.241

-0.583
0.117
0.292
0.239
0.709

0.275

Normalized Symmetric Error

0.058

ever. The measures of fit were .084 for tr E'E/pq and .042 for the normalized
symmetric measure.

Our final example is based on the results of a factor analysis and a
scale analysis of a 16 X 16 correlation matrix which was reported by Prien
and Liske [1962]. The factors are in a varimax position and the scaling
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solution was obtained with a modification of Kruskal’s [1964] program written
by Robert J. Wherry. We decided to carry out the fit both ways so as to be
able to compare the goodness of fit obtained when fitting A to B with that ob-
tained when fitting B to A. The results (using the notation B=cAT+Jy'+E
and A = dBS + J§& + E*) are shown in Table 3. Note that S = T’ and
also that tr E'E/pq < tr E¥E*/pq while the normalized symmetric error
measures are the same (.058) for both solutions.

In practice one would probably prefer to fit the more general non-
metric solution to the factor solution, especially if the latter has been rotated
to a simple structure position. Upon comparing the factor solution (Table 3,
matrix B) with the fitted scaling solution (Table 3, matrix B) and the associ-
ated residual matrix E, one finds that the first three dimensions are in fairly
close agreement between both methods while the last two factors disagree
more noticeably with their counterparts in the fitted scaling solution. For
instance, variable 9 (self rating on social skills) received only a moderate
weight on factor 4 but it received the highest weight on the fourth dimen-
sion of the fitted scaling solution. Roughly the converse is true for variable
16 (self rating on overall efficiency) with regard to the fifth dimension of
both solutions.

It is quite possible that one might be interested in fitting a multidi-
mensional scaling solution to a factor analytic solution having more dimen-
sions than the sealing solution. This situation can be handled by the present
method by augmenting the scaling solution with columns of zeros bringing
its column order up to that of the factor solution. More extensive illustrations
of some practical applications of fitting nonmetric scaling solutions to factor
analytic solutions, including some where the scaling solution has fewer di-
mensions than the factor solution, are described in Carroll [1969].
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