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The problem of locating two sets of points in a joint space, given the
Tuclidean distances between elements from distinet sets, is solved algebra-
ically. For error free data the solution is exact, for fallible data it has least
squares properties.

1. Introduction

In Coombs’ own words “the basic assumptions of the theory of pref-
erential choice on which the unfolding technique in one dimension is based
are as follows: Each individual and each stimulus may be represented by a
point on a common dimension called a “J: -scale,”’ . . . and each individual’s
preference ordering of the stimuli from most to least preferred corresponds
to the rank order of the absolute distances of the stimulus points from the
ideal point, the nearest being the most preferred. The individual’s pref-
erence ordering is called an “I-scale” and may be thought of as the J-scale
folded at the ideal point. . . . The data consist of a set of I-scales from a
number of individuals, and the analytical problem is how to unfold these
I-scales to recover the J-scale” [Coombs, 1964, p. 80].

Coombs and his coworkers, notably Bennett [1956], Bennett and Hays
[1960], and Hays and Bennett [1961], generalized this basic idea into a
theory, and a technique, for multidimensional unfolding, with the objective
of locating the points of both sets, given a number of I-scales, in a joing
space of more than one dimension.

In its original nonmetric form [Coombs, 1958] this model presents
considerable technical problems even in the simplest, one-dimensional case.
Goode [1957] contributed an ingenious algorithm aimed at easing the effort
necessary to unfold a set of I-scales in one dimension. The technical difficulties
multiply in the multidimensional case, and, although the theoretical work
by Bennett and Hays provides a solution in principle, such a solution quickly
becomes impractical for “even . . . a moderate number of stimuli in & mod-
erately small dimensionality” [Coombs, 1964, p. 175].

Realizing this, Coombs, very early, looked for a metric version of his
unfolding problem which, perhaps, might be easier to solve and which might
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also be useful as an approximate substitute for the nonmetric case in certain
situations [Coombs & Kao, 1960; Coombs, 1964, Ch. 8]. Again we quote
Coombs [p. 181f]: “Consider the simple case of a one-dimensional latent
attribute generating the preferences of individuals over a set of al-
ternatives. . . . Consider the I-scale of an individual at the extreme left end
of the scale and that of another individual very close to him. Clearly, their
preference orderings will be almost identical and will correlate close to +1.
Individual A’s I-scale will correlate progressively less with the I-scales of
other individuals as they are farther removed from him on the joint scale.
In fact, the correlation will be zero between individual A and the median
individual in the distribution, and will ultimately be —1 between him and
the individual at the extreme opposite end of the scale. . . . If we factor
analyze the correlation matrix for such a configuration by the method of
principal components, the space obtained will be two-deminsional, and under
rotation one dimension will be the original line that generated the preferential
choices and the second dimension will be the vector of the median individual
on the line. . . . The higher the projection of an individual’s point on this
‘extra dimension the more central the individual in the configuration of
individuals. Hence the nearer he is to the others on the average and the
‘better he represents them.”

( Coombs used metric data (¢.e.,, numerical distances instead of just
their orderings) to verify this intuitive reasoning was essentially correct.
‘We might point out, in passing, that his definition of the “median individual”
comes very close to that of a centroid (being the point least distant from
a set of given points, 7.e., the mean individual) so that the problem of having
to “rotate out” this extra dimension could have been avoided by first re-
moving the centroid, prior to obtaining the principal axes decomposition.
(See also below.)

) In [1964] Ross and Cliff took a closer look at the metric version of Coombs’
unfolding model. They found “first, (that the) Coombs and Kao [1960] con-
jecture is nearly correct in that under some conditions the rank of the matrix
of correlations between individuals of the distance between an individual
and a stimulus will be approximately one greater than the dimensionality
of the set of points. This is only approximately true, however. Exact state-
ments are possible if squared distances are used instead of distances them-
selves. Here we sce that the obtained rank will be one greater than the
number of common dimensions. The ‘extra’ factor will give the distance
from the centroid of one set of points. Doubly-centering the matrix will
eliminate the extra factor” [p. 176]. Ross and Cliff also found that, while
“determination of the rank of the space . . . is thus quite straightforward . . .
solution for the two sets of coordinates which will reproduce D (the distance
matrix) is another matter. . . . A relatively simple (viz. one-dimensional)
case was investigated. . . . In the errorless case, an attempt to solve for the
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two unknowns resulted in sixth degree equations. . .. The intractableness of
even this simple case led us to abandon attempts at a solution” [p. 174].
Notwithstanding, the present paper owes much to their thoughtful exposition
of some of the aspects of the metric multidimensional scaling problem.

2. An Algebraic Formulation of the Metric Unfolding Problem

Given two sets of points Sy, +-+ , S, and Py, -+ , P, with coordinate
vectorsal (i = 1, --- , p) and b} (j = 1, - -+, g) relative to some originin a
joint Cartesian space of m (> 1) dimensions one can compute all distances
d;; between pairs with one member from each set as

(2.1) df, = (a,' - b,-)’(a,- _ b,) = a,{a,' _ 2a£b; + b,’b,
which could be written
(2.2 P = @) =aPJ, — 24B" + J,b*,

where J, and J, are two column vectors of ones with p and ¢ components
respectively, a® = (ala,), b® = (b/b,) and A, B are the two coordinate
matrices of the S; and P;, respectively. These two matrices are determined
only up to a rotation which will Jeave the distances and the scalar products
alb; invariant, as is well known.

In Schonemann, [in press] use was made of the fact that any translation
of the coordinates @/ to some new origin with coordinates a} can be achieved
by use of an oblique projection operator @ which annihilates vectors of type
J which appear in (2.2). For example, if @ = ¢’A and c¢ satisfies ¢'J = 1
(which it can always be made to satisfy, see tbid.) then the matrix

(2.3) Q =1—Jug

will be idempotent and will also annihilate all (column-) vectors in the space
of J. Applying such a matrix to A one finds

24) A* = QA = A — J,(cld) = A — Ja5.

A* is a matrix with rows a*’ = a! — a) , which are the coordinates of the
/th point of the first set relative to some new origin a; with coordinate repre-
sentation a) = ¢/A prior to the translation. One similarly obtains a matrix
B* with rows b}’ = b, — ¢}B if one premultiplies B with the idempotent
matrix
Q=1-Jgc (3, =1).

However, it is important to note that even where p = q and @, = @,
a!l # bl , in general, i.e., the origins to which A and B are referred to will
not be the same.

Applying two such projectors, @, and @, , to eq. (2.2) one obtains

(2.5) Ci, = A*B* = QAB'Q} = Qu(— ALY /2)Q;
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which is a matrix with elements c;; which formally resemble scalar products
between pairs of elements from distinet sets, except that the coordinates
of the left member (a*’) are expressed relative to a different origin than
those of the right member (b%*). To avoid confusion let us call these elements

(2.6) cis = (@ — a0)'(b; — o) = a¥'by

“quasi-scalar products.”

An off-diagonal matrix of such quasi-scalar products can be computed
from the off-diagonal matrix of the observed distances A, = (d;;) where
the choice of Q, and Q, is quite arbitrary. A case could be made, perhaps,
for preferring the centroids of both subsets as new origins, in which case

@.7) Q= I — J,J;/p) and @, = (I — JJi/¢)-

The matrix C;, can be decomposed into a product of two matrices G, H
of full column rank in a number of ways, e.g., by an Eckart-Young (1936)
decomposition. Any two such factorizations must be related by a non-
singular transformation. In particular, let

2.8) C» = GH' = A*T'TB¥

relate A* with G (GT = A*) and B* with H (HT™" = B*) where G (with
rows g!) and H (with rows h!) are the factors of a given full rank factorization
of Cys .

One then has

2.9) al = a¥ + al = ¢giT + a}
and
bl = b} + by = RT™V + b .
Returning to (2.1) one now finds for the squares of the observed distances
(2.10) di; = 9!Mg; + RMh; + 29T (a0 — be) — 2h[T™""(a; ~ bo)

-+ (ao - bo)’(ao - bo) - 291"}&;
where

(2.11) M=TT.

Given A = (d};), ¢/ and h} (which is computable from (2.5)) the
problem is now to solve for the unknowns m,, in M = (m,,) = M’ and the
vector of unknowns a, — b,. Having obtained M, it could be factored for T
as in (2.11) which then could be used to find A4, B, from (2.8) as

2.12) GT = A — J,a, = A, HT™ = B — Jp}.
HT™", in turn could be converted, with the help of the vector @, — b, into

(2‘13) HT—" - Ja(a() - bo), =B — ang = Bo .
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Ao, B, would give the coordinates of both sets of points in a joint space
relative to an origin at a} up to a rotation.

3. An Algebraic Solution of the Metric Unfolding Problem
Eqs. (2.10) can be rearranged to read

B.1)  fiu =di + 2¢lh; = giMg: + 2giT(ao — b)) i=1,---,p
j = 11 ety q
-+ terms not involving the subseript <.

Therefore, differencing on ¢ will eliminate all terms which are either constants
or which depend on j alone, e.g.,

(3.2)
fir — foi = glMg; — g;Mg, + 2(g! — g;)T(a0 — bo) t=1,+,p—1
j: 1’ . o @ ’q.

There now are (p — 1)q equations in m(m + 1)/2 4+ m = m(m + 3)/2
unknowns. Moreover, eqs. (3.2) can be written as a linear system of (p — 1)g
inhomogeneous equations in m(m 4+ 3)/2 unknowns.

To see this, eonsider the simplified case of p equations of the type

(3.3) k; = ¢fXe, , X = (z,,) = X’ i=1,--,p
r,8=1,--+,n

where the p vectors ¢! and the p constants k; are known and where the
problem is to solve for the elements z,, in the symmetric matrix X. One
could write such a system in summation notation as

(3.4) Z Zci,cisx,, = k,‘ 7 = 1, e, P
T r,s=1,+,n

or, equivalently, sinee z,, = z,, , as

(3.5) D DG =k  i=1,--,p

r<s

where
Yre = ,, if r =35
= 2z,, i r <s.

It is clear that (3.4) is an inhomogeneous system of p linear equations in
n® unknows, some of which appear in pairs. The matrix of coefficients, with
entries c;,.c;, , has repeated columns, rendering it of deficient column rank.
The change from the z,, to the y,, eliminates these redundant columns,
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rendering the system, hopefully, of full column rank (provided p > (n* +
n)/2 and no other dependencies exist).
One may therefore rewrite (3.2) as

(3.6) fii — foi = dfi - d:i + 2(g: — gp),h:'

Z Z (girgt‘a - gprgm)nn + Z (gsr — gm)xf

r<s

where z, (r = 1, -+ , m) are the components of the vector 2T (a, — be) and
3.7 Npse = M,, if r=3s
= 2m,, if r<s.

Not all of the resulting (p — 1)q linear equations are independent.
Rather, there are at most p — 1 linearly independent equations in (3. 6)
since each row of the coefficient matrix is repeated ¢ times.

Hence, in the exact case, where all these equations are identities, it
would suffice to solve the system (3.6) for any given j. The solution should
be unique provided p — 1 > m(m + 3)/2 since there is no obvious reason
why the m(m + 3)/2 columns should not be linearly independent. We thus
have a necessary, and, in general, also sufficient condition for a unique
solution of the metric multidimensional unfolding problem. It should also
be clear that there is, of course, perfect symmetry between the two sets
of points, e.g., between subjects and stimuli, so that our condition for a
unique solution applies to either p or g, whichever is larger. If ¢ > p one
simply interchanges the role of both subsets in all of the preceding equations
to arrive at the same conclusions.

In the fallible case the rows of the coefficient matrix would still repeat
g times, but there is no assurance that the constants on the left of (3.6) also
will. Indeed, the system will probably be inconsistent as soon as the number
of linearly independent rows exceeds the number of columns, i.e., when it
is “overdetermined.” But in this case one can obtain a least squares solution
by multiplying (3.6) on the left with the Moore inverse of the coefficient
matrix since (3.6) is formally identical with a set of regression equations if
the system is overdetermined. To be explicit, let K be the matrix of coeffi-
cients in (3.6) with ¢ identical submatrices K, of order (p — L)xm(m + 3)/2
of the form

(38) K° = (g"'g':‘ ~ GorGps 5 Jir — gm’)r K' = (Kt; 1K6 y " ,K(’))
?:=]_,--.,p—-]_’ r=1’-..’m S=7r, ", m

and let the vector of known constants on the left of (3.6) be denoted f with
g subvectors

B9  fi= s —dy+ 20— g)h), P = D
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let the m(m + 1)/2 unknowns 7,, be assembled in a vector » and the remain-
ing m unknowns z, in a vector £. Then (3.6) becomes

(3.10) f= K@
whence
(3.11) @ = (K’K)"'K'f

= (KK 'K}
(where f = (1/q) 2_3f)

is either an exact solution or a least squares solution, depending on whether
(3.10) is consistent or not. For error free data it must be consistent, so that
the solution will be exact. For fallible data, provided one has enough to
overdetermine the system, it will probably be inconsistent, so that in this
case one obtains a least squares solution for the unknowns m,, and z, .
Having solved (3.10), one can assemble the components of the partition
v of the solution veector into a symmetric matrix M = (m,,) = M’ where

3.12) My = Npy Il 7 =38
= n,,/2 otherwise.

In the exact case this matrix M must be positive definite and can there-
fore be factored for T (2.11) which is determined up to a rotation. In the
fallible case M may not necessarily be positive definite. If only one root is
non-positive, we suggestt to construet from M a new matrix M* by replacing
the non-negative root by some ETA (> 0) which is less than the smallest
positive root of M, and then to factor M*. Not only must M*, so constructed,
be positive definite, but it also is a least squares approximation to M subject
to the constraint that no roots be less than ETA. This is so because the sum
of squares of the residuals (M,, — M *) is given by the sum of squared differ-
ences between the two sets of latent roots in M and M*.

Once T has been found by factoring M or M* the difference vector
ao — by can be computed from (3.6) as

(3.13) Ay — bo = T_IE/Z.

T and this difference vector can then be used as in (2.12), (2.13) to obtain
the coordinates of both sets of elements up to a rigid motion.

1This remedy did not work as well in practice as had been hoped when these lines
were written. If M/ has nonpositive roots the program should be terminated. One of my
students, Miss Wang, is presently working on a more robust least squares solution to handle
the fallible case.



356 PSYCHOMETRIKA:

4. Computational N otes

While the foregoing algebra may appear involved, the classical, one-
dimensional case of the unfolding model can actually be computed by hand
as we shall demonstrate in the next section. However, as the number of
dimensions m exceeds 1 the computations tend to become unwieldy, especially
in view of the need to solve the linear system (3.10), (3.11), which involves
five unknowns if m = 2, nine unknowns if m = 3 and, in general, m(m + 3)/2
unknowns for a solution in m dimensions. For this reason a subroutine was
written, in FORTRAN IV, which is available from the author upon request.
For the benefit of potential users who prefer to write their own, perhaps
more efficient program, we include some computational suggestions.

The overall flow of such a program should not present any difficulties.
To summarize the major steps:

[1] Read the distance matrix A, , p, ¢, m (optional), ETA (optional).

[2] Compute the matrix of quasi-scalar products Ciz = Q. (—A2/2)Q; ,
according to (2.5). This can be done by squaring the elements d,; in
A5 , doubly centering the resulting matrix, dividing all elements by 2
and reversing all signs, in which case the elements c;; in C;, are expressed
relative to the two different centroids of both sets.

[3] Decide on m, the dimensionality of the joint space and decompose C\,
into a product C;, = GH’ where both @, H are of full column rank m.
This is most conveniently done in terms of an Eckart-Young decom-
position of C,, in view of the well-known least squares properties of
such a decomposition. Moreover, the Eckart—-Young roots in D.(in
Cio = XD,Y', X'X = Y'Y = Iinw,a , D. = diagonal) can be used to
estimate m as the number of roots in D, which are larger in magnitude
than some preset ETA. However, care should be taken that m, which-
ever way arrived at, satisfies the admissibility condition m(m -+ 3)/2 <
max (p — 1, ¢ — 1), as a necessary condition for a unique solution of
the linear system (3.10).

[4] Construct the coefficient matrix K, in eq. (3.8) using the rows of the
larger matrix G, or H. Let G be the larger matrix (i.e., p > ¢) and let
G = XD, have elements ¢;, ¢ = 1, --+,p,r = 1, -+, m). A reasonable
procedure would be to construet K, in two steps:

(i) construct the p rows ¥’ of an intermediate matrix K* as

$1 o (p2 2 2
Ky == (Cu 3 €Ci1Ciz 5 " 1 Citlim 5 Ci2 s *** 3 Cim y Ci1 yCi2y """ ,Cim)

and
(i) obtain the (p — 1) X (m(m + 3)/2) matrix K, by subtracting the
p'th row of K* from all preceding p — 1 rows.
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[5] Construct the vector of constants f = (1/q 2.2 (d% + 2¢:; — db —
2¢,,)) (egs. (3.1) and (3.6))

[6] Find the vector of unknowns <2) by solving the linear system f =

v . o
K0< ) + e in a least squares sense, <.e., compute

3

(g) = (KiKo)"KiJ.
This step may require some care to avoid indeterminate solutions,
see below.

[7] Expand the components of the partition » of the solution vector into a
symmetric m X m matrix M using eq. (3.12). )

[8] Check M for positive-definiteness by obtaining its eigendecomposition
M = VD,V’. If necessary replace the non-positive root in D,, by some
ETA (> 0) to obtain a positive definite least squares approximation M*
as discussed at the end of Section 3.

[9] Factor M (or M*) into TT’, preferably using the eigendecomposition
obtained at step [8], 7.e., T = VDY?, where D,, contains the latent roots
of M (or M*).

[10] Carry G into 4, = GT, which expresses the coordinates of the larger
set relative to their own centroid as origin.

[11] Compute the difference vector ay — 8o = T7'£/2 = D;*V'/2, avoiding
explicit inversion by use of the eignedecomposition obtained at steps
8], [9].

[12] Compute By, = HT ™Y — J(ay — o) by first computing HT™Y =
HVD;Y? (avoiding explicit inversion as before) and then subtracting
the difference vector o, — 8, obtained at step [11] from each row of HT V.
This gives the coordinates of the second set relative to the centroid
of the first set as an origin.

[13] (Optional) Translate all p + ¢ coordinate vectors to the joint centroid
as origin by subtracting the mean coordinate vector (computed over
both A, , B,) from A, , B, to obtain 4, B.

These computations are fairly straightforward once an eigenroutine is
available. However, special care should be exercised at steps [3] and [6] to

ensure a unique solution for (’;) Upon solving the admissibility constraint

{Or Myax , ONE ObtAINS My < V8 max (p, g + 1 — 3)/2, i.e., m should not
exceed this number as a necessary condition for a unique solution of (Z)

Thus, if either a preset m or an m obtained by counting the Eckart—Young
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roots larger than ETA exceeds this number then m should be overwritten by
Miax before the factorization at step [3] is carried out. But even this precaution
may not be enough for certain data. Although in theory, as was pointed out in
Section 3, “there is no obvious reason why the m(m + 3)/2 columns (of Ky)
should not be linearly independent,” they may not be in practice, for no ob-
vious reason. To be sure one should probably check the matrix KK, for near-
singularity by obtaining its eigendecomposition, before taking the inverse,
and print out its latent roots. If any of these roots are smaller than some
preset ETA the user should be warned that K!K, may be ill-conditioned and
all subsequent calculations may be in error. Alternately one might consider
stepping down m by 1 before resuming at step [8] for a better determined
solution in a smaller space. In practical applications it is probably wise to
plan the experiment ahead of time so as to include a few more elements in
the larger set than the absolutely necessary minimum for a solution of speci-
fied dimension m.

Table 1
A Detailed Computational Example

Errorfree Data, m=l, p=h, q=3

Coordinates used to generate Ay,:
A' = (1.0 3.0 6.0 9.0) B' = (0.0 4.0 7.0)
Distance Matrix A,, generated with A, B:

8, = [1.0 3.0 6.07] = (dgy)

12
3.0 1.0 1.0
6.0 2.0 1.0

9.0 5.0 2.0

Computations:

Matrix of Squares A{§)=(d§j) Doubly Centered Matrix Q; A.'(Lg) Q) =
with row- and column means (dij -q;, -d 4t
(step [21) 3 'é_i_ (step [21) £
1.0 9.0 36.0 81.0 | 127 31.75 -27.50 -12.84 9,17 31.17 | .00
9.0 1.0 4.0 25.0 33 9.75 2,50 1.17 ~.83 =2.84 | .00
36.0 16.0 1.0 4.0 57 14.25 25.06  11.67 -8.34 -28.33 | .00
I; 46.0 26.0 41.0 110.0 | 223 Iy .00 .00 .00 .00
E'O-j 15.33 8.67 13.67 36.67 18.58 = d..

Overall Mean
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Table 1 Continued

Matrix of Quasi-Scalar Products: and its Factorization:
C1p = O (-2{3/2) q = G L
(Step [2]) (step [3])
13.75 =1.25 <~12.5 .619 [22.23 ~2.02 =-20,21}
6.42 ~.58 5,83 = «289
-4,58 242 4,17 ~,2086
-15.58 1.42 1&%.17 -,701
Intermediate Coefficient Coefficient
Matrix K* = (gg, g;): Matrix K, = (gg—gﬁ, g;-8y)
(step [4;1) (Step [45,1)
.383 2619 =,108 1.320
.083 »289 -.408 +990
043 ~,208 -. 449 »1495
492 ~,701
Intermediate Vector of Vector of Constants T (= fj here,
Constants f;f = (d;?.3‘+2°ij): since Data are Errorfree)
(Step [51) (Step [5]1)
fi' = (28.50 21.84% 26.83 49,83) ft = (-21,33 =28.00 =~23.00)
£ = (6.50 -.17 4.83  27.8%)
£ = (1100 .33 9.3  32.33)

5. Numerical Illustrations

Three numerical illustrations will be discussed in this section. T'wo of
these are one-dimensional, one is two-dimensional. Two are based on fallible
data, one on exact data. Two are metric applications while one was chosen
to illustrate the feasibility of using the present procedure for analyzing non-
metric data.

The first example (Table 1) is based on exact data and illustrates in
complete numerical detail the computational steps in the one-dimensional
case. A 4 X 3 distance matrix A,, was constructed from two coordinate
vectors 4, B for two types of points, say four stimuli S; and three people
P; . Since all computational steps are labeled in accordance with the com-
putational sequence outlined in Section 4, Table 1, if read in conjuction with
Section 4, should be self-explanatory.
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Table 1 Continued

Linear System K, (}) = Er (Step [61)
-.109 1,320 "mll— . -21.33
-.408  .990 %y ~28.00
- 443 (495 -23.00
Ko = = E

' -1, . - -1 -
Inverse (Ko Ko) : Solution Vector (z)—(K("Ko) Ké £

(Step [61) (Step [61)
5.55 .
.44 my ) 36.75
1.44 W71 *y -13.13

(Steps [71, [81, [91)

T= lel = 6.062 T

(Step [111)

1

= .1650 ag-by= Tt x,/2 = -1.08

Coordinates Relative to Centroid of Larger Set:

(Step [101) (Step [121)

- el
Ay = GT B, = HT = - J(ag-by}

= (3.75 1.75 -1.25 -4.25)

(4,75 .75 -2.25)

These coordinates relate to the input coordinates by the rigid motiont

Input Coordinates = - Output Coordinates + 4.75

and hence reproduce all input distances exactly.

The second example (Table 2) is intended to illustrate the possibility
of using the present, metric, procedure for analyzing non-metric data. Starting
with the same coordinates as in Table 1, and the corresponding distances,
it is now assumed that this metric distance information is filtered through
three respondents P, , P, , P; who return only ordinal distance information
in the form of three permutations of the stimuli S;. These permutations
correspond to the rank order of the distances of the four stimuli from each
of the three “ideal points” P; . Given these three permutations as the basic
input information, they are then encoded into numerical distance information
on an ordinal scale by (arbitrarily) assigning “1” to the stimulus closest
to P, (the first element of the j/th permutation), “2” to the second stimulus
in the j'th permutation, and so on.
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The resulting distance matrix A;, in Table 2 differs from that in Table 1
numerically, and it also contains an order reversal between ds; and ds. . The
corresponding matrix C,, of quasi-scalar products is no longer exactly of
rank one, as it was in Table 1.

The results obtained upon unfolding these distorted distances in one
dimension are shown in Table 2. If one compares the coordinate vectors 4,
B in Table 2 with those in Table 1 one finds that, while the order relations
within each set have been preserved, there are two transpositions between
sets, viz., P, with S, and P; with S; . The rank order correlation between
the metric (U) and the non-metric (V) coordinates is Rho (U, V) = .93.
Similarly, a comparison of (i) the metric distances used for input in example 1
(X), (ii) the distorted distances used for input in example 2 (Y), and (iii)
the distances reproduced from the output coordinates of example 2 (Z), shows
that the rank order has been essentially preserved for all three sets: there is
one error from X to ¥ (Rho (X, Y) = .93), another from Y to Z (Rho (Y,
Z) = .91), and two from X to Z (Rho (X, Z) = .84).

While these results, obtained for a relatively small example, are of

Table 2
A Non-Metric Application

Fallible Data, m=1, p=k, g=3

Permutations of four stimuli, Permutations encoded
Sl, 32’ 83, Su returned by into distances on an
three subjects, Pl’ P2, P3: ordered scale:
By Py Py By Py Py
Sl’ 82 53 Sl 1 3 4
s, S3 S, s, 2 1 8 |[=28
s, S, S, Sa3 3 2 1
Sy Sy 5 EN  ou 2
Matrix of Quasi-Scalar Products Eckart-Young Roots Dcofc12
- (2) [
Cip = Q (-4337/2) O
3.83 -.17 -3.67 lJc = (7.76 2.87 .00)
.33 1.83 =-2.17
~2,17 .33 1.83 Latent Roots of Ké Ko

-2,00 ~-2.00 4.00 (2.50 .12)
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Table 2 Continued

Coordinates A Coordinates B
Relative to Joint Centroid Relative to Joint Centroid
53y 5 S3 Sy P, P, Py
A' = (2,78, 1.14, -1.68, -2.86) B! = (1.23 .55 -1.16)
Reproduced Distance Residual Matrix
Matrix B,, E = Ay, =B
P, P, Py P, P, Py
Sl 1.5% 2,23 3.93 Sl =~.54 77 «07
8y .09 .59 2,30 Sy 1.91 AL W70
Sg | 2.1 2.22 .52 S3 W09 ~,22 U8
Sq_ 4,09 3.41 1.70 Sy -.09 «59 «30
Comparison Between Metric Input and Non-Metric Output
{Centroid) Coordinates Distances
1] v X Y Z
Metric Non-Metric Metric Non-Metric Non-Metric
Input Output dij Input Input Output
P, 4,29 1.23 a; 9 .09
sy 3.29 2.78 dy3 6 4 3.93
S, 1.29 1.14 day 6 3 2.91
P, .29 .55 4y 5 [ 3.1
s3  -l.71 -1.68 dyg 4 3 2.30
Py  ~2.71 -1.16 a5 3 3 2.23
S, -1 -2.89 dgy 3 2 .09
dsp 2 2 2.22
Rho-(U,V) = .93 dyy 2 2 1.70
a3 1 1 1.5%
a4, 1 1 259
Rho(X,Y)=.93 Rho(X,Z)=.84% Rho(Y,Z)=.91 dj3 1 1 .52

course not conclusive, they do seem to suggest that further study of the
possible non-metric use of the present metric unfolding method may be
worthwhile.

Our final example (Table 3) illustrates the general, multidimensional
case for fallible data. There are eight elements of one set and five of another.
The magnitude of the Eckart-Young roots D, indicates that a fit in two
dimensions may be feasible. The coefficient matrix K, of the linear system
(not given) is now 7 X 5, i.e., there are two more stimuli in the larger set
than the necessary minimum five. Despite this redundancy, thé smallest
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latent root of K;K, (.0234) is already fairly close to zero. In another two-
dimensional example (not given) with only six elements in the larger set
the smallest root dropped to .0009 for exact data, and to less than .0005
for fallible data which illustrates the need for caution at this step to ensure
a unique solution for the unknowns. In the present instance the solution
for the five unknowns m,, , 2m,s , M,z , and x; , z, is unique and the resulting
2 X 2 matrix M positive definite, so that no least squares adjustments of
its roots became necessary. The two matrices of coordinates 4 (8 X 2)
and B (b X 2) are expressed relative to their joint centroid (so that their
columns, if summed over all 13 rows, sum to zero). These coordinate matrices
are defined up to a common rotation by an orthogonal 2 X 2 matrix. The
rows of A and B were then used to recompute an 8 X 5 matrix of distances
A,, which is compared with the matrix of input distances A, in B = A, —
A;: . As can be seen from Table 3 these residuals are fairly small so that the

Table 3

General Case., Fallible Data, m=2, p=8, q=5

Distance Matrix 4,, Used Matrix of Quasi-Scalar
for Input Products Cl2

Pl P2 P3 PH P5 Pl P2 P3 P# Ps
Sl 4,0 3.0 3.0 4,0 6.0 -4.41 8,96 10,96 -2.85 -12.66
32 3.0 9.0 .9.0 2,0 4.0 9.59 -16.54% ~14.54 13.65 7.84
S3 | 3.0 5.0 6.0 4.0 2.0 =51 1,36 ~2.14% ~2.u45 3.7
Su 2.0 4,0 4,0 3.0 3.0 -1.61 2.26 b.,26 =-2,55 -2.36
85 4.0 2.0 3.0 5.0 5.0 -5.,11 10.76 10.26 ~8.05 -7.86
SB 4,0 1.0 2.0 5.0 5.0 -5.91 11.46 11.96 -8.85 8,66
S7 3.0 9.0 9.0 3.0 2.0 8.89 -17.24 -15,24 10,45 13.14
Sa 4,0 6.0 7.0 4.0 2.0 -.91 -1.04 -5.54 .65 6.84

- i - i
Eckart-Young roots D, of C;, Latent roots of K(') Ko
Dc = (54,22 1l.41 3.35 1.56 .00) {(3.41 1.07 .23 ,06 .02)

Coordinates A Relative to Coordinates B Relative
Joint Centroid to Joint Centroid
Sl 82 S3 Su 85‘ S6 S7 S8 Pl P2 P3 Pu P5

At=[2.00 -4.47 -,31 .46 2.35 2.65 -4.50 -1.05 ] B'={-1.51 &4.54 4.42 -2,18 -2.,41

2.70 1.97 -2.52 -,12 -.45 -,37 -,56 ~2.91 .86 .12 1.27 1.41 -1.41
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Table 3 Continued

Reproduced Distance Residual Matrix

Matrix 31, E= A, - A
P, P, Py B B P, p, P, B B
s; [8.96 .62 2.81 .37 6.02] " .08 —.62 .18 =37 =.02]
s, |3.17 9.20 8.92 2.36 3,96 .17 -.200  J18  -.36 .04
Sy [8.59 5.52 6.06 K.35 2.37 —.58  =.52 =.06 =.35 ~.37
Sy |2.20 ®.08 .19 3.05 3.1 -.20 ~.09 -.18 <-.05 =%
Sg |4.07 2,26 2.69 4.89 .85 -.07 =26 3% .11 .15
Sg |u.3% 1.96 2.41 5.1 5.16 ~u38 =96 © =1 -4 -.16
s; [3.81 9.06 9.10 3.08 2.26 .31 =06 =~.10 =-.08 -.26
Sg L3‘é° 6.36 6.88 4.4G  2.02] [ -.20 -.36 .88 .46 -.02)

fit in two dimensions can be judged satisfactory. There is a noticeable bias
towards negative discrepancies in E for which we cannot offer an explanation.

In conclusion, it should be pointed out that the present method fails
if one set of elements is contained entirely within a proper subspace of the
other, e.g., if the locus of one set of points is a straight line contained in a
plane defined by the other set of points, and if the data are exact. Such
configurations are not likely to arise with real data but the reader should
be aware of this limitation of the present method.

Our conjecture is that such configurations call for an analysis within
the larger space (i.e., in two dimensions, in the example) while the rank of
C,, is bounded by the dimensionality of the smaller space (i.e., one, in the
example). Therefore, only a subset of the necessary Eckart-Young vectors
(one such vector pair, in the example) would be uniquely defined, while the
rest would be defined only up to a rotation. This indeterminacy (of the
second columns in G, H, in the example) would carry into a corresponding
indeterminacy of the columns of the coefficient matrix K, , and render the
present approach inapplicable.

Reviewers wondered about the relation of the present solution to other
individual difference models in multidimensional sealing, especially the
metric procedure proposed by Bloxom [1968] and Carroll and Chang [1970]
and the non-metric procedures described by Lingoes [in press], Kruskal
[1968], and others. It should be clear that our present solution is nothing
more or less than an algebraic solution of a geometric problem: to locate
two sets of points in a joint space (by assigning coordinates to them) given
the Euclidean distances between elements from distinct sets. As such it
bears no direct relationship to either the non-metric unfolding techniques
(which, by definition, do not require knowledge of Euclidean distances) nor
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to- the model proposed by Bloxom [1968] and Carroll and Chang [1970]
(which postulates a different space for each individual and which does re-
quire knowledge of all distances within one set—usually the stimuli).

Earlier work by Carroll and Chang [1967] does seem to include the
metric unfolding paradigm as a special case. The difference is that knowledge
about the stimulus space is obtained by conventional multidimensional
scaling techniques (which require all distances within one set) which then
is used to determine subject specific scale values. In the present solution
these assignments are made simultaneously in the spirit of Coombs’ original
formulation of the unfolding paradigm.

As to the choice between metric versus non-metric techniques, we feel
that the present emphasis on non-metric techniques, on the presumed strength
of their greater generality, may well be ill-advised in the long run, at least
as long as it is not realized that the input information has to be justified as
meaningful in both cases. The need for such a justification is perhaps more
obvious with metric techniques. This may well prove a blessing in disguise,
precisely because it limits their use. For an excellent discussion of this problem
see Krantz [1967].
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