ERRATUM

Biological Cybernetics

Some algebraic relations between involutions, convolutions and correlations, with applications to holographic memories

P. H. Schönemann

Published online: 29 February 2008 © Springer-Verlag 2008

Erratum to: Biol Cybern (1987) 56:367–374 DOI 10.1007/BF00319516

I noticed a transposition error in the definition of a#b in Eq. (2.4) that invalidates some of the derivations on p. 369 and, in particular, the resulting summaries in Table 1. Equation (2.4) should have read

$$a\#b = a^*Sb \tag{2.4}$$

and, consequently, the matrix representation, Eq. (3.8),

$$a\#b = [a]Sb. (3.8)$$

The transpose of the resulting numerical vector in Eq. (3.9) is (2, 7, 13, 5). Equations (2.7)–(2.8) should be disregarded. The corrected Cayley tables for *, #, and the involution S, are given in Table 1.

The two main results of the paper remain intact:

- 1. Replacement of the correlation # by S and * greatly simplifies derivations, since it restores commutativity and associativity, and
- 2. Deconvolution with *g*-inverses rather than correlation leads to a possibly preferable alternative memory model, given in Eq. (6.1), that avoids some of the shortcoming of the traditional convolution/correlation paradigm.

Table 1 Cayley tables for *, #, and S in $\langle H, \#, *, S \rangle$ (row element first factor)

* -> #					#>*	#>*				
*	а	b	Sa	Sb	#	a	b	Sa	Sb	
a	a#Sa b#Sa	a#Sb	a#a	a#b	а	a*Sa	a*Sb	a*a	a*b	
b	b#Sa	b#Sb	b#a	b#b	b	b*Sa	b*Sb	b*a	b*b	
Sa	a#a	b#a	Sa#a	Sa#b Sb#a	Sa	S(a*a)	S(a*b)	a*Sa	Sa*b	
Sb	a#b	b#b	Sb#a	Sb#b Sa#b	Sb	S(b*a)	S(b*b)	Sb*a	b*Sb	

Application to convolution memories: learning:memory trace a^*b . Recall with cue c: $c^*a^*b = c^*s^*a^*b = c^*s^*b^*c$. If a=c is used as cue and happens to be "perfectly noiselike" ($a^*a = a^*s = a = u$), then $c^*a^*a = a^*s = a^$

The online version of the original article can be found under doi:10.1007/BF00319516.

P. H. Schönemann (⊠)

Department of Psychological Sciences, Purdue University,

West Lafayette, IN 47906, USA

e-mail: phs@psych.purdue.edu

